日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)滿足:f(1)=
          14
          ,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),則f(2010)=
           
          分析:由于題目問的是f(2010),項(xiàng)數(shù)較大,故馬上判斷函數(shù)勢(shì)必是周期函數(shù),所以集中精力找周期即可;周期的尋找方法可以是不完全歸納推理出,也可以是演繹推理得出.
          解答:解:取x=1,y=0得f(0)=
          1
          2

          法一:根據(jù)已知知f(1)=
          1
          4

          取x=1,y=1得f(2)=-(
          1
          4

          取x=2,y=1得f(3)=-(
          1
          2

          取x=2,y=2得f(4)=-(
          1
          4

          取x=3,y=2得f(5)=-(
          7
          16

          取x=3,y=3得f(6)=(
          1
          2

          猜想得周期為6
          法二:取x=1,y=0得f(0)=
          1
          2

          取x=n,y=1,有f(n)=f(n+1)+f(n-1),
          同理f(n+1)=f(n+2)+f(n)
          聯(lián)立得f(n+2)=-f(n-1)
          所以f(n)=-f(n+3)=f(n+6)
          所以函數(shù)是周期函數(shù),周期T=6,
          故f(2010)=f(0)=
          1
          2
          點(diǎn)評(píng):準(zhǔn)確找出周期是此類問題(項(xiàng)數(shù)很大)的關(guān)鍵,分別可以用歸納法和演繹法得出周期,解題時(shí)根據(jù)自己熟悉的方法得出即可.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)滿足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
          1
          2

          (1)若n∈N*時(shí),求f(n)的表達(dá)式;
          (2)設(shè)bn=
          nf(n+1)
          f(n)
            (n∈N*)
          ,sn=b1+b2+…+bn,求
          1
          s1
          +
          1
          s2
          +…+
          1
          sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x) 滿足f(x+4)=x3+2,則f-1(1)等于( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)滿足f(x)+f'(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
          (1)當(dāng)x≥0時(shí),曲線y=f(x)在點(diǎn)M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
          (2)若g(x)<t2+λt+1在x∈[-1,1]時(shí)恒成立,求t的取值范圍;
          (3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點(diǎn)個(gè)數(shù),并作出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=3,則
          f2(1)+f(2)
          f(1)
          +
          f2(2)+f(4)
          f(3)
          +
          f2(3)+f(6)
          f(5)
          +
          f2(4)+f(8)
          f(7)
          =
          24.
          24.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•珠海二模)已知函數(shù)f(x)滿足:當(dāng)x≥1時(shí),f(x)=f(x-1);當(dāng)x<1時(shí),f(x)=2x,則f(log27)=( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案