日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=aln(x+1)﹣x2在區(qū)間(0,1)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,不等式 >1恒成立,則實(shí)數(shù)a的取值范圍為(
          A.[15,+∞)
          B.(﹣∞,15]
          C.(12,30]
          D.(﹣12,15]

          【答案】A
          【解析】解:∵ 的幾何意義為: 表示點(diǎn)(p+1,f(p+1)) 與點(diǎn)(q+1,f(q+1))連線的斜率,
          ∵實(shí)數(shù)p,q在區(qū)間(0,1)內(nèi),故p+1 和q+1在區(qū)間(1,2)內(nèi).
          不等式 >1恒成立,
          ∴函數(shù)圖象上在區(qū)間(1,2)內(nèi)任意兩點(diǎn)連線的斜率大于1,
          故函數(shù)的導(dǎo)數(shù)大于1在(1,2)內(nèi)恒成立.
          由函數(shù)的定義域知,x>﹣1,
          ∴f′(x)= >1 在(1,2)內(nèi)恒成立.
          即 a>2x2+3x+1在(1,2)內(nèi)恒成立.
          由于二次函數(shù)y=2x2+3x+1在[1,2]上是單調(diào)增函數(shù),
          故 x=2時(shí),y=2x2+3x+1在[1,2]上取最大值為15,
          ∴a≥15
          ∴a∈[15,+∞).
          故選A.
          【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)= ,若存在x1、x2、…xn滿足 = =…= = ,則x1+x2+…+xn的值為(
          A.4
          B.6
          C.8
          D.10

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:向量 =( ,0),O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M滿足:| + |+| |=4.
          (1)求動(dòng)點(diǎn)M的軌跡C的方程;
          (2)已知直線l1 , l2都過(guò)點(diǎn)B(0,1),且l1⊥l2 , l1 , l2與軌跡C分別交于點(diǎn)D,E,試探究是否存在這樣的直線使得△BDE是等腰直角三角形.若存在,指出這樣的直線共有幾組(無(wú)需求出直線的方程);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2=4 ρsin(θ+ )﹣4.
          (Ⅰ)求曲線C2的直角坐標(biāo)方程,并指出其表示何種曲線;
          (Ⅱ)若曲線C1與曲線C2交于A、B兩點(diǎn),求|AB|的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=x2﹣ax+ln(x+1)(a∈R).
          (1)當(dāng)a=2時(shí),求函數(shù)f(x)的極值點(diǎn);
          (2)若函數(shù)f(x)在區(qū)間(0,1)上恒有f′(x)>x,求實(shí)數(shù)a的取值范圍;
          (3)已知c1>0,且cn+1=f′(cn)(n=1,2,…),在(2)的條件下,證明數(shù)列{cn}是單調(diào)遞增數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知橢圓C: (a>b>0)的離心率為 ,以橢圓C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
          (1)求橢圓C的方程;
          (2)求 的最小值;
          (3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:|OR||OS|是定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】工人在懸掛如圖所示的一個(gè)正六邊形裝飾品時(shí),需要固定六個(gè)位置上的螺絲,首先隨意擰緊一個(gè)螺絲,接著擰緊距離它最遠(yuǎn)的第二個(gè)螺絲,再隨意擰緊第三個(gè)螺絲,接著擰緊距離第三個(gè)螺絲最遠(yuǎn)的第四個(gè)螺絲,第五個(gè)和第六個(gè)以此類推,則不同的固定方式有種.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】將函數(shù)y=cos(2x+ )的圖象向左平移 個(gè)單位后,得到f(x)的圖象,則(
          A.f(x)=﹣sin2x
          B.f(x)的圖象關(guān)于x=﹣ 對(duì)稱
          C.f( )=
          D.f(x)的圖象關(guān)于( ,0)對(duì)稱

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】執(zhí)行如圖所示的程序框圖,如果輸入的x∈[﹣1,3],則輸出的y屬于(
          A.[0,2]
          B.[1,2]
          C.[0,1]
          D.[﹣1,5]

          查看答案和解析>>

          同步練習(xí)冊(cè)答案