日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)橢圓的左、右焦點(diǎn)分別、,點(diǎn)是橢圓短軸的一個(gè)端點(diǎn),且焦距為6,的周長為16.
          (I)求橢圓的方程;
          (2)求過點(diǎn)且斜率為的直線被橢圓所截的線段的中點(diǎn)坐標(biāo).
          (1)(2)

          試題分析:(1)利用橢圓的標(biāo)準(zhǔn)方程及其參數(shù)a、b、c的關(guān)系即可得出;
          (2)把直線與橢圓的方程聯(lián)立,利用根與系數(shù)的關(guān)系就線段的中點(diǎn)坐標(biāo)公式即可得出.
          試題解析:(1)設(shè)橢圓的半焦距為,則由題設(shè)得,         3分
          解得,所以,             5分
          故所求的方程為.                    6分
          (2)過點(diǎn)且斜率為的直線方程為,         8分
          將之代入的方程,得,即.               10分
          設(shè)直線與橢圓有兩個(gè)交點(diǎn),
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042651535511.png" style="vertical-align:middle;" />,所以線段中點(diǎn)的橫坐標(biāo)為,
          縱坐標(biāo)為 .                        11分
          故所求線段的中點(diǎn)坐標(biāo)為.                   12分.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的右焦點(diǎn)為F,A為短軸的一個(gè)端點(diǎn),且,的面積為1(其中為坐標(biāo)原點(diǎn)).
          (1)求橢圓的方程;
          (2)若C、D分別是橢圓長軸的左、右端點(diǎn),動(dòng)點(diǎn)M滿足,連結(jié)CM,交橢圓于點(diǎn),證明:為定值;
          (3)在(2)的條件下,試問軸上是否存在異于點(diǎn)C的定點(diǎn)Q,使得以MP為直徑的圓恒過直線DP、MQ的交點(diǎn),若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的離心率為,其長軸長與短軸長的和等于6.

          (1)求橢圓的方程;
          (2)如圖,設(shè)橢圓的上、下頂點(diǎn)分別為,是橢圓上異于的任意一點(diǎn),直線分別交軸于點(diǎn),若直線與過點(diǎn)的圓相切,切點(diǎn)為.證明:線段的長為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知是橢圓E:的兩個(gè)焦點(diǎn),拋物線的焦點(diǎn)為橢圓E的一個(gè)焦點(diǎn),直線y=上到焦點(diǎn)F1,F(xiàn)2距離之和最小的點(diǎn)P恰好在橢圓E上,

          (1)求橢圓E的方程;
          (2)如圖,過點(diǎn)的動(dòng)直線交橢圓于A、B兩點(diǎn),是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的離心率為,右焦點(diǎn)為(,0).
          (1)求橢圓的方程;  
          (2)若過原點(diǎn)作兩條互相垂直的射線,與橢圓交于,兩點(diǎn),求證:點(diǎn)到直線的距離為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,且長軸長為12,離心率為,則橢圓的方程是(  )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          過原點(diǎn)O作兩條相互垂直的直線分別與橢圓P:交于A、C與B、D, 則四邊形ABCD面積最小值為______________________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-4,0)、B(4,0),動(dòng)點(diǎn)P與A、B連線的斜率之積為-.
          (1)求點(diǎn)P的軌跡方程;
          (2)設(shè)點(diǎn)P的軌跡與y軸負(fù)半軸交于點(diǎn)C.半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓M被y軸截得的弦長為r.
          (ⅰ)求圓M的方程;
          (ⅱ)當(dāng)r變化時(shí),是否存在定直線l與動(dòng)圓M均相切?如果存在,求出定直線l的方程;如果不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知直線l經(jīng)過點(diǎn)(1,0)且一個(gè)方向向量d=(1,1).橢圓C:=1(m>1)的左焦點(diǎn)為F1.若直線l與橢圓C交于A,B兩點(diǎn),滿足·=0,求實(shí)數(shù)m的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案