日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,設拋物線C:y=x2的焦點為F,動點P在直線l:x-y-2=0上運動,過P作拋物線C的兩條切線PA、PB,且與拋物線C分別相切于A、B兩點,
          (1)求△APB的重心G的軌跡方程;
          (2)證明∠PFA=∠PFB。
          解:(1)設切點A、B坐標分別為,
          ∴切線AP的方程為:
          切線BP的方程為:,
          解得P點的坐標為:
          所以△APB的重心G的坐標為,

          所以,
          由點P在直線l上運動,從而得到重心G的軌跡方程為:,
          。
          (2)因為
          由于P點在拋物線外,則,
          ,
          同理有,
          ∴∠AFP=∠PFB。
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,設拋物線C:y=x2的焦點為F,動點P在直線l:x-y-2=0上運動,過P作拋物線C的兩條切線PA、PB,且與拋物線C分別相切于A、B兩點.則△APB的重心G的軌跡方程為
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,設拋物線C:y=x2的焦點為F,動點P在直線l:x-y-2=0上運動,過P作拋物線C的兩條切線PA、PB,且與拋物線C分別相切于A、B兩點.
          (1)求△APB的重心G的軌跡方程.
          (2)證明∠PFA=∠PFB.

          查看答案和解析>>

          科目:高中數(shù)學 來源:江西 題型:解答題

          如圖,設拋物線C:y=x2的焦點為F,動點P在直線l:x-y-2=0上運動,過P作拋物線C的兩條切線PA、PB,且與拋物線C分別相切于A、B兩點.
          (1)求△APB的重心G的軌跡方程.
          (2)證明∠PFA=∠PFB.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年高三數(shù)學精品復習17:拋物線及其性質(zhì)(解析版) 題型:解答題

          如圖,設拋物線C:y=x2的焦點為F,動點P在直線l:x-y-2=0上運動,過P作拋物線C的兩條切線PA、PB,且與拋物線C分別相切于A、B兩點.則△APB的重心G的軌跡方程為    

          查看答案和解析>>

          同步練習冊答案