日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設拋物線C1:y2=4mx(m>0)的準線與x軸交于點F1,焦點為F2;橢圓C2以F1、F2為焦點,離心率e=
          12

          (I)(文科做)當m=1時,
          ①求橢圓C2的標準方程;
          ②若直線l與拋物線交于A、B兩點,且線段AB恰好被點P(3,2)平分,設直線l與橢圓C2交于M、N兩點,求線段MN的長;
          (II)(僅理科做)設拋物線C1與橢圓C2的一個交點為Q,是否存在實數(shù)m,,使得△QF1F2的邊長是連續(xù)的自然數(shù)?若存在,求出這樣的實數(shù)m的值;若不存在,請說明理由.
          分析:(I)①當m=1時,拋物線C1方程可知,所以橢圓C2中c與a值可求,進而得出橢圓的標準方程;
          ②由題意得,若x=3,則y=±2
          3
          ,線段AB不可能被點P(3,2)平分.直線l的斜率k一定存在,不妨設直線l的方程為:y-2=k(x-3),A(x1,y1),B(x2,y2),將直線的方程代入橢圓的方程,消去x得到關于y的一元二次方程,再結合根系數(shù)的關系利用中點坐標公式即可求得k值,從而求得直線l的方程.
          (II)先假設存在實數(shù)m,使得△QF1F2的邊長是連續(xù)的自然數(shù),由P點為拋物線與橢圓在第一象限的焦點,所以只要根據(jù)拋物線方程求出橢圓方程,再聯(lián)立,即可得出Q點坐標,從而分別求出△QF1F2的三邊長,讓三邊成公差為1得等差數(shù)列,求m的值,若能求出,則存在,若不能求出,則不存在.
          解答:解:(I)①∵c1:y2=4mx的右焦點F2(m,0)∴橢圓的半焦距c=m,
          e=
          1
          2
          ,∴橢圓的長半軸的長a=2m,短半軸的長b=
          3
          m

          橢圓方程為
          x2
          4m2
          +
          y2
          3m2
          =1

          ∴當m=1時,故橢圓方程為
          x2
          4
          +
          y2
          3
          =1

          ②由題意得,若x=3,則y=±2
          3
          ,線段AB不可能被點P(3,2)平分,
          ∴直線l的斜率k一定存在,不妨設直線l的方程為:y-2=k(x-3),A(x1,y1),B(x2,y2
          y2=4x
          y-2=k(x-3)
          得ky2-4y-12k+8=0,
          ∴y1+y2=
          4
          k
          =4,∴k=1,
          ∴直線l的方程為:y-2=x-3,即y=x-1.
          (II)假設存在滿足條件的實數(shù)m,
          y2=4mx
          x2
          4m2
          +
          y2
          3m2
          =1
          ,解得:Q(
          2
          3
          m,
          8
          3
          m)
          ,
          |QF2|=
          2
          3
          m+m=
          5
          3
          m
          |QF1|=4m-|QF2|=
          7
          3
          m
          ,又|F1F2|=2m=
          6
          3
          m

          即△QF1F2的邊長分別是
          5
          3
          m
          、
          6
          3
          m
          7
          3
          m

          6m
          3
          -
          5m
          3
          =
          7m
          3
          -
          6m
          3
          =1
          ∴m=3,
          故存在實數(shù)m使△PF1F2的邊長是連續(xù)的自然數(shù).
          點評:本題考查拋物線和橢圓的標準方程和簡單性質,弦長公式的應用,考查了橢圓、拋物線與直線的位置關系以及存在性問題,綜合性強,做題時認真觀察,找出切入點.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,設拋物線C1:y2=4mx(m>0)的準線與x軸交于F1,焦點為F2;以F1,F(xiàn)2為焦點,離心率e=
          12
          的橢圓C2與拋物線C1在x軸上方的交點為P.
          (1)當m=1時,求橢圓C2的方程;
          (2)當△PF1F2的邊長恰好是三個連續(xù)的自然數(shù)時,求拋物線方程;此時設⊙C1、⊙C2…⊙Cn是圓心在y2=4mx(m>0)上的一系列圓,它們的圓心縱坐標分別為a1,a2…an,已知a1=6,a1>a2>…>an>0,又⊙Ck(k=1,2,…,n)都與y軸相切,且順次逐個相鄰外切,求數(shù)列{an}的通項公式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,設拋物線C1:y2=4mx(m>0)的準線與x軸交于F1,焦點為F2;以F1,F(xiàn)2為焦點,離心率e=
          12
          的橢圓C2與拋物線C1在x軸上方的交點為P,延長PF2交拋物線于點Q,M是拋物線C1上一動點,且M在P與Q之間運動.
          (1)當m=1時,求橢圓C2的方程;
          (2)當△PF1F2的邊長恰好是三個連續(xù)的自然數(shù)時,求△MPQ面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設拋物線C1:y2=4mx(m>0)的準線與x軸交于F1,焦點為F2,以F1,F(xiàn)2為焦點,離心率為
          12
          的橢圓C2與拋物線C1的一個交點為P.
          (1)若橢圓的長半軸長為2,求拋物線方程;
          (2)在(1)的條件下,直線l經(jīng)過橢圓C2的右焦點F2,與拋物線C1交于A1,A2兩點,如果|A1A2|等于△PF1F2的周長,求l的斜率;
          (3)是否存在實數(shù)m,使得△PF1F2的邊長是連續(xù)的自然數(shù)?若存在,求出m的值,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,設拋物線C1:y2=4mx(m>0)的準線與x軸交于點F1,焦點為F2;以F1,F(xiàn)2為焦點,離心率為
          1
          2
          的橢圓C2與拋物線C1在x軸上方的交點為P,延長PF2交拋物線于點Q,M是拋物線C1上一動點,且M在P與Q之間運動.
          (1)當m=3時,求橢圓C2的標準方程;
          (2)若|PF2|=5且P點橫坐標為
          2
          3
          m
          ,求面積△MPQ的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖所示,設拋物線C1:y2=4mx(m>0)的焦點為F2,且其準線與x軸交于F1,以F1,F(xiàn)2為焦點,離心率e=
          12
          的橢圓C2與拋物線C1在x軸上方的一個交點為P.
          (1)當m=1時,求橢圓C2的方程;
          (2)是否存在實數(shù)m,使得△PF1F2的三條邊的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實數(shù)m;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案