日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在底面是直角梯形的四棱錐P-ABCD中,∠DAB=90°,PA⊥平面 ABCD,PA=AB=BC=1,AD=2,M為PD中點(diǎn).
          ( I ) 求證:MC∥平面PAB;
          (Ⅱ)在棱PD上找一點(diǎn)Q,使二面角Q-AC-D的正切值為

          【答案】分析:(1)欲證MC∥平面PAB,根據(jù)線面平行的判定定理可知只需在平面PAB中找一直線與MC平行即可,取PA的中點(diǎn)E,連接BE、EM,根據(jù)EM與BC平行且相等,則MC∥BE,又MC?面PAB,BE⊆面PAB,滿足定理所需條件;
          (2)過Q作QF∥PA交AD于F,作FH⊥AC,H為垂足.連接QH則∠QHF是二面角Q-AC-D的平面角,然后根據(jù)二面角Q-AC-D的正切值為建立等式關(guān)系,解之即可求Q在棱PD上的位置.
          解答:解:(1)取PA的中點(diǎn)E,連接BE、EM,則EM與BC平行且相等,∴四邊形BCME是平行四邊形.∴MC∥BE,
          又MC?面PAB,BE⊆面PAB,∴MC∥平面PAB…(6分)
          (2)如圖過Q作QF∥PA交AD于F,
          ∴QF⊥平面ABCD.作FH⊥AC,H為垂足.連接QH∴∠QHF是二面角Q-AC-D的平面角.
          設(shè)AF=x,∴AH=FH=x,F(xiàn)D=2-x.又=,∴QF=,
          在Rt△QFH中,tan∠QHF===,∴x=1.
          當(dāng)Q為棱PD中點(diǎn)時(shí),二面角Q-AC-D的正切值為.…(12分)
          點(diǎn)評:本題主要考查了線面平行的判定,以及二面角的度量,同時(shí)考查了空間想象能力和論證推理的能力,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在底面是直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,且∠ADC=arcsin
          5
          5
          ,又PA⊥平面ABCD,AD=3AB=3PA=3a,
          (I)求二面角P-CD-A的正切值;
          (II)求點(diǎn)A到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在底面是直角梯形的四棱錐    P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4.AD=2,AB=2
          3
          ,BC=6.
          (Ⅰ)求證:BD⊥平面PAC;
          (Ⅱ)求二面角A-PC-D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•宿州一模)如圖,在底面是直角梯形的四棱錐P-ABCD中,∠DAB=90°,PA⊥平面ABCD,PA=AB=BC=3,梯形上底AD=1.
          (1)求證:BC⊥平面PAB;
          (2)求面PCD與面PAB所成銳二面角的正切值;
          (3)在PC上是否存在一點(diǎn)E,使得DE∥平面PAB?若存在,請找出;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在底面是直角梯形的四棱錐P-ABCD中,∠DAB=90°,PA⊥平面 ABCD,PA=AB=BC=1,AD=2,M為PD中點(diǎn).
          ( I ) 求證:MC∥平面PAB;
          (Ⅱ)在棱PD上找一點(diǎn)Q,使二面角Q-AC-D的正切值為
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在底面是直角梯形的四棱錐S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=
          12

          (1)求四棱錐S-ABCD的體積;
          (2)求證:面SAB⊥面SBC.

          查看答案和解析>>

          同步練習(xí)冊答案