日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          已知正方體ABCD-A1B1C1D1的棱長為a.
          (1)求點C1到平面AB1D1的距離;
          (2)求平面CDD1C1與平面AB1D1所成的二面角(結果用反三角函數值表示).

          【答案】分析:(1)以A為坐標原點,AB,AD,AA1方向分別為x,y,z軸正方向建立空間坐標系,求出平面AB1D1的法向量,則C1到平面AB1D1的距離,代入即可求出點C1到平面AB1D1的距離;
          (2)求出平面CDD1C1的一個法向量,結合(1)中平面AB1D1的法向量,代入向量夾角公式,即可求出二面角的平面角的余弦值,進而得到平面CDD1C1與平面AB1D1所成的二面角的大。
          解答:解:(1)按如圖所示建立空間直角坐標系,可得有關點的坐標為A(0,0,0)、D1(0,a,a)、B1(a,0,a)、C1(a,a,a)
          ,向量,
          是平面AB1D1的法向量,于是,有,

          令z=-1,得x=1,y=1.
          于是平面AB1D1的一個法向量是.(5分)
          因此,C1到平面AB1D1的距離(8分)
          (2)由(1)知,平面AB1D1的一個法向量是.又因AD⊥平面CDD1C1,故平面CDD1C1的一個法向量是.(10分)
          設所求二面角的平面角為θ,則.(13分)
          所以,平面CDD1C1與平面AB1D1所成的二面角為.(14分)
          點評:本題考查的知識點是用空間向量求平面間的夾角,點到平面的距離,其中(1)的關鍵是求出平面AB1D1的法向量,然后代入中求解,(2)的關鍵是求出平面CDD1C1的一個法向量和平面AB1D1的法向量,將二面角問題轉化為向量夾角問題.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          如圖,已知正方體ABCD-A1B1C1D1的棱長為2,點P在平面DD1C1C內,PD1=PC1=
          2
          .求證:
          (1)平面PD1A1⊥平面D1A1BC;
          (2)PC1∥平面A1BD.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          已知正方體ABCD-A1B1C1D1中,E、F分別為BB1、CC1的中點,那么直線AE與D1F所成角的余弦值為( 。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          已知正方體ABCD-A1B1C1D1中,E為棱CC1的動點.
          (1)當E恰為棱CC1的中點時,試證明:平面A1BD⊥平面EBD;
          (2)在棱CC1上是否存在一個點E,可以使二面角A1-BD-E的大小為45°?如果存在,試確定點E在棱CC1上的位置;如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          已知正方體ABCD-A1B1C1D1,則四面體A1-C1BD在面A1B1C1D1上的正投影的面積與該四面體表面積之比是
          3
          6
          3
          6

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          精英家教網已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點.
          (1)求證:C1O∥面AB1D1;
          (2)求異面直線AD1與 C1O所成角的大。

          查看答案和解析>>

          同步練習冊答案