日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】命題p:若a、b∈R,則|a|+|b|>1是|a+b|>1的充分而不必要條件;命題q:函數(shù)y= 的定義域是(﹣∞,﹣1]∪[3,+∞),則(
          A.“p或q”為假
          B.“p且q”為真
          C.p真q假
          D.p假q真

          【答案】D
          【解析】解:∵|a+b|≤|a|+|b|,
          若|a|+|b|>1,不能推出|a+b|>1,而|a+b|>1,一定有|a|+|b|>1,故命題p為假.
          又由函數(shù)y= 的定義域為|x﹣1|﹣2≥0,即|x﹣1|≥2,即x﹣1≥2或x﹣1≤﹣2.
          故有x∈(﹣∞,﹣1]∪[3,+∞).
          ∴q為真命題.
          故選D.
          【考點精析】利用復(fù)合命題的真假對題目進行判斷即可得到答案,需要熟知“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時為假,其他情況時為真.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知如下等式: , , ,…當(dāng)n∈N*時,試猜想12+22+32+…+n2的值,并用數(shù)學(xué)歸納法給予證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC點,F(xiàn)棱AC上,且AF=3FC.

          (1)求三棱錐D﹣ABC的體積;
          (2)求證:AC⊥平面DEF;
          (3)若M為DB中點,N在棱AC上,且CN= CA,求證:MN∥平面DEF.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù), ,( ).

          (1)討論函數(shù)上零點的個數(shù);

          (2)若有兩個不同的零點 ,求證: .

          (參考數(shù)據(jù): ,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓x2+y2=4上一定點A(2,0),B(1,1)為圓內(nèi)一點,P,Q為圓上的動點.

          (1)求線段AP中點的軌跡方程;
          (2)若∠PBQ=90°,求線段PQ中點的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=sin(ωx+)(ω>0,0≤≤π)為偶函數(shù),其圖象上相鄰的兩個最高點之間的距離為2π. (Ⅰ)求f(x)的解析式;
          (Ⅱ)若 ,求 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a>0,a≠1,設(shè)p:函數(shù)y=loga(x+1)在(0,+∞)上單調(diào)遞減;q:曲線y=x2+(2a﹣3)x+1與x軸交于不同的兩點.如果p且q為假命題,p或q為真命題,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)雙曲線的一個焦點為F,虛軸的一個端點為B,如果直線FB與該雙曲線的一條漸近線垂直,那么此雙曲線的離心率為( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊答案