已知橢圓C的兩焦點(diǎn)分別為,長軸長為6,
⑴求橢圓C的標(biāo)準(zhǔn)方程;
⑵已知過點(diǎn)(0,2)且斜率為1的直線交橢圓C于A 、B兩點(diǎn),求線段AB的長度。.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)圓C與兩圓(x+)2+y2=4,(x-
)2+y2=4中的一個內(nèi)切,另一個外切.
(1)求C的圓心軌跡L的方程;
(2)已知點(diǎn)M(,
),F(xiàn)(
,0),且P為L上動點(diǎn),求||MP|-|FP||的最大值及此時點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)橢圓動直線
與橢圓
只有一個公共點(diǎn)
,且點(diǎn)
在第一象限.
(1)已知直線的斜率為
,用
表示點(diǎn)
的坐標(biāo);
(2)若過原點(diǎn)的直線
與
垂直,證明:點(diǎn)
到直線
的距離的最大值為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點(diǎn)為
,點(diǎn)
,線段
的中點(diǎn)在拋物線上.設(shè)動直線
與拋物線相切于點(diǎn)
,且與拋物線的準(zhǔn)線相交于點(diǎn)
,以
為直徑的圓記為圓
.
(1)求的值;
(2)證明:圓與
軸必有公共點(diǎn);
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓
恒過點(diǎn)
?若存在,求出
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的方程為
,定直線
的方程為
.動圓
與圓
外切,且與直線
相切.
(1)求動圓圓心的軌跡
的方程;
(2)直線與軌跡
相切于第一象限的點(diǎn)
, 過點(diǎn)
作直線
的垂線恰好經(jīng)過點(diǎn)
,并交軌跡
于異于點(diǎn)
的點(diǎn)
,求直線
的方程及
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的右焦點(diǎn)為
,離心率
,
是橢圓上的動點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)若直線與
的斜率乘積
,動點(diǎn)
滿足
,(其中實(shí)數(shù)
為常數(shù)).問是否存在兩個定點(diǎn)
,使得
?若存在,求
的坐標(biāo)及
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)(2011•天津)設(shè)橢圓+
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.點(diǎn)P(a,b)滿足|PF2|=|F1F2|.
(Ⅰ)求橢圓的離心率e;
(Ⅱ)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn),若直線PF2與圓(x+1)2+=16相交于M,N兩點(diǎn),且|MN|=
|AB|,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓經(jīng)過點(diǎn)P(1.
),離心率e=
,直線l的方程為x=4.
(1)求橢圓C的方程;
(2)AB是經(jīng)過右焦點(diǎn)F的任一弦(不經(jīng)過點(diǎn)P),設(shè)直線AB與直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為.問:是否存在常數(shù)λ,使得
?若存在,求λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓,
為坐標(biāo)原點(diǎn),橢圓的右準(zhǔn)線與
軸的交點(diǎn)是
.
(1)點(diǎn)在已知橢圓上,動點(diǎn)
滿足
,求動點(diǎn)
的軌跡方程;
(2)過橢圓右焦點(diǎn)的直線與橢圓交于點(diǎn)
,求
的面積的最大值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com