【題目】已知為拋物線
的焦點(diǎn),點(diǎn)
為其上一點(diǎn),
與
關(guān)于
軸對稱,直線
與拋物線交于異于
的
兩點(diǎn),
,
.
(1)求拋物線的標(biāo)準(zhǔn)方程和點(diǎn)的坐標(biāo);
(2)判斷是否存在這樣的直線,使得
的面積最小.若存在,求出直線
的方程和
面積的最小值;若不存在,請說明理由.
【答案】(1);(2)最小值
,此時(shí)直線
的方程為
【解析】試題分析:(1)由題意知,得出拋物線的方程,由
,得出
,
,根據(jù)
,得
,由此能求出
點(diǎn)坐標(biāo);(2)由題意知直線的斜率不為
,設(shè)直線
的方程為
,聯(lián)立方程組
,設(shè)兩個(gè)交點(diǎn)
,由
得
,由此能求出當(dāng)
時(shí)
有最小值
,此時(shí)直線方程為
.
試題解析:(1)由題意知,故拋物線方程為
∵
∴
∴
(2)由題意知直線的斜率不為0,則可設(shè)直線的方程為
聯(lián)立方程組
設(shè)兩個(gè)交點(diǎn),由
,整理得
,此時(shí),
恒成立.故直線
的方程可設(shè)為
從而直線
過定點(diǎn)
.
又∵
∴的面積
∴當(dāng)時(shí)有最小值
,此時(shí)直線
的方程為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,手機(jī)的功能逐漸強(qiáng)大,很大程度上代替了電腦、電視.為了了解某高校學(xué)生平均每天使用手機(jī)的時(shí)間是否與性別有關(guān),某調(diào)查小組隨機(jī)抽取了名男生、
名女生進(jìn)行為期一周的跟蹤調(diào)查,調(diào)查結(jié)果如表所示:
平均每天使用手機(jī)超過 | 平均每天使用手機(jī)不超過 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
(1)能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為學(xué)生使用手機(jī)的時(shí)間長短與性別有關(guān)?
(2)在這名女生中,調(diào)查小組發(fā)現(xiàn)共有
人使用國產(chǎn)手機(jī),在這
人中,平均每天使用手機(jī)不超過
小時(shí)的共有
人.從平均每天使用手機(jī)超過
小時(shí)的女生中任意選取
人,求這
人中使用非國產(chǎn)手機(jī)的人數(shù)
的分布列和數(shù)學(xué)期望.
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
的焦點(diǎn)為
,過點(diǎn)
的直線
交拋物線
于
(
位于第一象限)兩點(diǎn).
(1)若直線的斜率為
,過點(diǎn)
分別作直線
的垂線,垂足分別為
,求四邊形
的面積;
(2)若,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若曲線在點(diǎn)
處的切線與直線
垂直,求函數(shù)的極值;
(2)設(shè)函數(shù).當(dāng)
=
時(shí),若區(qū)間[1,e]上存在x0,使得
,求實(shí)數(shù)
的取值范圍.(
為自然對數(shù)底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
為自然對數(shù)的底數(shù),常數(shù)
.
(1)求函數(shù)在區(qū)間
上的零點(diǎn)個(gè)數(shù);
(2)函數(shù)的導(dǎo)數(shù)
,是否存在無數(shù)個(gè)
,使得
為函數(shù)
的極大值點(diǎn)?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求函數(shù)的零點(diǎn)個(gè)數(shù);
(2)證明:當(dāng),函數(shù)
有最小值,設(shè)
的最小值為
,求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為
(
為參數(shù)).以直角坐標(biāo)系的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求的普通方程和
的直角坐標(biāo)方程;
(2)若過點(diǎn)的直線
與
交于
,
兩點(diǎn),與
交于
,
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且經(jīng)過點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線
交橢圓于
兩點(diǎn),
是
軸上的點(diǎn),若
是以
為斜邊的等腰直角三角形, 求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年8月20日起,市交警支隊(duì)全面啟動路口秩序環(huán)境綜合治理,重點(diǎn)整治機(jī)動車不禮讓斑馬線和行人的行為,經(jīng)過一段時(shí)間的治理,從市交警隊(duì)數(shù)據(jù)庫中調(diào)取了20個(gè)路口近三個(gè)月的車輛違章數(shù)據(jù),經(jīng)統(tǒng)計(jì)得如圖所示的頻率分布直方圖,統(tǒng)計(jì)數(shù)據(jù)中凡違章車次超過30次的設(shè)為“重點(diǎn)關(guān)注路口”.
(1)現(xiàn)從“重點(diǎn)關(guān)注路口”中隨機(jī)抽取兩個(gè)路口安排交警去執(zhí)勤,求抽出來的路口的違章車次一個(gè)在,一個(gè)在
中的概率;
(2)現(xiàn)從支隊(duì)派遣5位交警,每人選擇一個(gè)路口執(zhí)勤,每個(gè)路口至多1人,違章車次在的路口必須有交警去,違章車次在
的不需要交警過去,設(shè)去“重點(diǎn)關(guān)注路口”的交警人數(shù)為
,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com