A
分析:根據(jù)向量數(shù)量積與夾角的關(guān)系及函數(shù)單調(diào)性的定義,我們及判斷出命題p與命題q的真假,進而根據(jù)復(fù)數(shù)命題的真值表,我們對四個答案逐一進行分析,即可得到答案.
解答:

時,向量

與

可能反向
故命題p:若

,則

與

的夾角為鈍角為假命題
若定義域為R的函數(shù)f(x)在(-∞,0)及(0,+∞)上都是增函數(shù),
f(x)在(-∞,+∞)上的單調(diào)性無法確定
故命題q:定義域為R的函數(shù)f(x)在(-∞,0)及(0,+∞)上都是增函數(shù),則f(x)在(-∞,+∞)上是增函數(shù)也為假命題
故“p且q”是假命題,故B錯誤;
“p且q”是假命題,故A正確;
p為假命題、
?q均為真命題,故C、D不正確;
故選A.
點評:本題考查的知識點是復(fù)合命題的真假,函數(shù)單調(diào)性的判斷與證明,數(shù)量積表示兩個向量的夾角,其中判斷出命題p與命題q的真假,是解答本題的關(guān)鍵.