日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設M是底面ABC內一點,定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(,x,y),且≥8恒成立,則正實數a的最小值為   
          【答案】分析:先根據三棱錐的特點求出其體積,然后利用基本不等式求出的最小值,建立關于a的不等關系,解之即可.
          解答:解:∵PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.
          ∴V P-ABC=××3×2×1=1=+x+y
          即x+y=則2x+2y=1
          =()(2x+2y)=2+2a++≥2+2a+4≥8
          解得a≥1
          ∴正實數a的最小值為1
          故答案為:1
          點評:本題主要考查了棱錐的體積,同時考查了基本不等式的運用,是題意新穎的一道題目,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          精英家教網如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設M是底面ABC內一點,定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
          1
          2
          ,x,y),且
          1
          x
          +
          a
          y
          ≥8恒成立,則正實數a的最小值為
           

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當△AEF的面積最大時,tanθ的值為(  )

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.
          (Ⅰ)求證:DE‖平面PBC;
          (Ⅱ)求證:AB⊥PE;
          (Ⅲ)求二面角A-PB-E的大。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點繞三棱錐側面一圈回到點A的最短距離是
          3
          ,則PA=
          1
          1

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          精英家教網如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點D,E分別在棱
          PB,PC上,且BC∥平面ADE
          (I)求證:DE⊥平面PAC;
          (Ⅱ)當二面角A-DE-P為直二面角時,求多面體ABCED與PAED的體積比.

          查看答案和解析>>

          同步練習冊答案