日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),它的前n項(xiàng)和為Sn(n∈N*),已知點(diǎn)(an,4Sn)在函數(shù)f (x)=x2+2x+1的圖象上.
          (1)證明{an}是等差數(shù)列,并求an
          (2)設(shè)m、k、p∈N*,m+p=2k,求證:+
          (3)對(duì)于(2)中的命題,對(duì)一般的各項(xiàng)均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請(qǐng)證明你的結(jié)論,如果不成立,請(qǐng)說(shuō)明理由.
          【答案】分析:(1)由4Sn=an2+2an+1,遞推得4Sn-1=an-12+2an-1+1(n≥2),兩式相減整理可得(an+an-1)(an-an-1-2)=0,由an+an-1≠0,可知an-an-1=2,符合等差數(shù)列的定義.
          (2)由(1)可求得,從而有Sm=m2,Sp=p2,Sk=k2.再作差比較.
          (3)由特殊到一般可猜想結(jié)論成立,設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,則,可證明Sm+Sp-2Sk=ma1+d+pa1+d-[2ka1+k(k-1)d]=(m+p)a1+d-[2ka1+(k2-k)d]=•d=≥0,SmSp===,從而得證.
          解答:證明:(1)∵4Sn=an2+2an+1,
          ∴4Sn-1=an-12+2an-1+1(n≥2).
          兩式相減得4an=an2-an-12+2an-2an-1
          整理得(an+an-1)(an-an-1-2)=0,
          ∵an+an-1≠0,
          ∴an-an-1=2(常數(shù)).
          ∴{an}是以2為公差的等差數(shù)列.又4S1=a12+2a1+1,即a12-2a1+1=0,解得a1=1,
          ∴an=1+(n-1)×2=2n-1.(4分)
          (2)由(1)知,∴Sm=m2,Sp=p2,Sk=k2
          =
          =0,
          .(7分)
          (3)結(jié)論成立,證明如下:
          設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,則,
          ∵Sm+Sp-2Sk=ma1+d+pa1+d-[2ka1+k(k-1)d]=(m+p)a1+d-[2ka1+(k2-k)d],
          把m+p=2k代入上式化簡(jiǎn)得
          Sm+SP-2Sk=•d=≥0,
          ∴Sm+Sp≥2Sk.
          又SmSp==

          =
          ==
          +==
          故原不等式得證.(14分)
          點(diǎn)評(píng):本題主要考查數(shù)列與函數(shù),不等式的綜合運(yùn)用,主要涉及了等差數(shù)列通項(xiàng)及前n項(xiàng)和,不等式證明,還考查了放縮法,轉(zhuǎn)化思想.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N+,都有a13+a23+a33+…+an3=Sn2,其中Sn為數(shù)列{an}的前n項(xiàng)和.
          (Ⅰ)求證:an2=2Sn-an;
          (Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅲ)設(shè)bn=3n+(-1)n-1λ•2an(λ為非零整數(shù),n∈N*)試確定λ的值,使得對(duì)任意n∈N*,都有bn+1>bn成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),Sn是其前n項(xiàng)和,且對(duì)任意n∈N*都有an2=2Sn-an
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)若bn=(2n+1)2an,求數(shù)列{bn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)數(shù)列{an}的各項(xiàng)均為正實(shí)數(shù),bn=log2an,若數(shù)列{bn}滿足b2=0,bn+1=bn+log2p,其中p為正常數(shù),且p≠1.
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)是否存在正整數(shù)M,使得當(dāng)n>M時(shí),a1•a4•a7•…•a3n-2>a16恒成立?若存在,求出使結(jié)論成立的p的取值范圍和相應(yīng)的M的最小值;若不存在,請(qǐng)說(shuō)明理由;
          (3)若p=2,設(shè)數(shù)列{cn}對(duì)任意的n∈N*,都有c1bn+c2bn-1+c3bn-2+…+cnb1=-2n成立,問(wèn)數(shù)列{cn}是不是等比數(shù)列?若是,請(qǐng)求出其通項(xiàng)公式;若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),它的前n項(xiàng)和為Sn,點(diǎn)(an,Sn)在函數(shù)y=
          1
          8
          x2+
          1
          2
          x+
          1
          2
          的圖象上,數(shù)列{bn}的通項(xiàng)公式為bn=
          an+1
          an
          +
          an
          an+1
          ,其前n項(xiàng)和為T(mén)n
          (1)求an;   
          (2)求證:Tn-2n<2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•江蘇一模)設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)的和為Sn,對(duì)于任意正整數(shù)m,n,Sm+n=
          2a2m(1+S2n)
          -1
          恒成立.
          (1)若a1=1,求a2,a3,a4及數(shù)列{an}的通項(xiàng)公式;
          (2)若a4=a2(a1+a2+1),求證:數(shù)列{an}成等比數(shù)列.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案