日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>

        1. (1)直線B1F是否平行于平面D1DE?
          (2)求二面角C1―BD1―B1的大;
          (3)若點P是棱AB上的一個動點,求四面體DPA1C1體積的最大值.

          (Ⅰ)B1F∥平面D1DE (Ⅱ)60°(Ⅲ)


          (Ⅰ)證明:取棱A1B1的中點E1,連結(jié)E1D.∵B1E1∥DF且相等 
          ∴四邊形DFB1E1為平行四邊形  ∴B1F∥DE1.
          又∵B1F平面D1DE,易得DE1平面D1DE,∴B1F∥平面D1DE.
          (Ⅱ)取A1C1與B1D1的交點O1,在平面BB1D1D上作O1H⊥BD1,
          重足為H,連結(jié)HC1.∵C1O1⊥B1D1,平面BB1D1D⊥平面A1B1C1D1,
          ∴C1O1⊥平面BB1D1D,∴C1H⊥BD1
          即∠O1HC1是所求二面角的平面角,

          ∠O1HC1=60°所以二面角C1-BD1-B1的大小是60°
          (Ⅲ)延長BA到M,使AM=AB連結(jié)MD,則∵AB∥DC且相等,
          ∴AM∥DC且相等   ∴四邊形MACD是平行四邊形.∴MD∥AC且相等,
          又四邊形A1ACC1是平行四邊形   ∴AC∥A1C1且相等,∴MD∥A1C1且相等
          ∴MD與A1C1確定一個平面,即平面DA1C1,∴M是直線BA與平面DA1C1的交點.
          ∴當動點P與B重合時,P到平面DA1C1的距離最大,四面體DP A1C1體積最大.
          此時四面體DP A1C1為正四面體,
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知正方體ABCD—中,E為棱CC上的動點,
          (1)求證:
          (2)當E恰為棱CC的中點時,求證:平面

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,直角所在平面外一點,且,點為斜邊的中點.
          (1)  求證:平面;
          (2)  若,求證:

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖所示,在棱長為的正方體中,,,分別是,,的中點.
          (1)  求證:平面
          (2)  求的長.
          (3)  求證:平面

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知某幾何體的直觀圖和三視圖如下圖所示, 其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.
          (Ⅰ)證明:BN⊥平面C1B1N;
          (Ⅱ)設(shè)直線C1N與平面CNB1所成的角為,求sin的值;
          (Ⅲ)M為AB中點,在CB上是否存在一點P,使得MP∥平面CNB1,若存在,求出BP的長;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題


          (1)求證:AEBE;
          (2)求三棱錐D—AEC的體積;
          (3)求二面角A—CD—E的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          菱形ABCD在平面α內(nèi),PC⊥α,則PA與對角線BD的位置關(guān)系是(    )
          A.平行B.相交但不垂直
          C.垂直相交D.異面垂直

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖所示,正方體ABCD—A1B1C1D1中,側(cè)面對角線AB1,BC1上分別有兩點E,F(xiàn),且B1E=C1F.求證:EF∥平面ABCD.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          平面  平面,則直線的位置關(guān)系是
          A.平行B.相交C.異面D.平行或異面

          查看答案和解析>>

          同步練習冊答案