日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知長軸在x軸上的橢圓的離心率e=
          6
          3
          ,且過點(diǎn)P(1,1).
          (1)求橢圓的方程;
          (2)若點(diǎn)A(x0,y0)為圓x2+y2=1上任一點(diǎn),過點(diǎn)A作圓的切線交橢圓于B,C兩點(diǎn),求證:CO⊥OB(O為坐標(biāo)原點(diǎn)).
          (1)由題意,設(shè)橢圓方程為
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)

          ∵e=
          6
          3
          ,∴
          a2-b2
          a2
          =
          2
          3
          ,∴a2=3b2
          ∵橢圓過點(diǎn)P(1,1),∴
          1
          a2
          +
          1
          b2
          =1

          ∴a2=4,b2=
          4
          3

          ∴橢圓的方程為
          x2
          4
          +
          3y2
          4
          =1

          (2)證明:由題意可求得切線方程為x0x+y0y=1
          ①若y0=0,則切線為x=1(或x=-1),則B(1,1),C(1,-1),∴CO⊥OB(當(dāng)x=-1時(shí)同理可得);
          ②當(dāng)y0≠0時(shí),切線方程為x0x+y0y=1,與橢圓聯(lián)立并化簡得(3x02+y02)x2-6x0x+3-4y02=0
          ∴x1+x2=
          6x0
          3x02+y02
          ,x1x2=
          3-4y02
          3x02+y02

          設(shè)B(x1,y1),C(x2,y2),則x1x2+y1y2=(1+
          x02
          y02
          )x1x2-
          x0
          y02
          (x1+x2)+
          1
          y02

          =(1+
          x02
          y02
          3-4y02
          3x02+y02
          -
          x0
          y02
          ×
          6x0
          3x02+y02
          +
          1
          y02
          =0
          ∴CO⊥OB
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)
          如圖,四邊形OABC為矩形,點(diǎn)A、C的坐標(biāo)分別為(a+1,0)(a>1)、(0,1),點(diǎn)D在OA上,坐標(biāo)為(a,0),橢圓C分別以O(shè)D、OC為長、短半軸,CD是橢圓在矩形內(nèi)部的橢圓。阎本l:y=-x+m與橢圓弧相切,且與AD相交于點(diǎn)E.
          (Ⅰ)當(dāng)m=2時(shí),求橢圓C的標(biāo)準(zhǔn)方程;
          (Ⅱ)圓M在矩形內(nèi)部,且與l和線段EA都相切,若直線l將矩形OABC分成面積相等的兩部分,求圓M面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
          (1)當(dāng)m=1時(shí),求橢圓C的方程;
          (2)在(1)的條件下,直線l過焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長|AB|等于△PF1F2的周長,求直線l的方程;
          (3)由拋物線弧y2=4mx(0≤x≤
          2m
          3
          )
          和橢圓弧
          x2
          4m2
          +
          y2
          3m2
          =1
          (
          2m
          3
          ≤x≤2m)

          (m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•懷化二模)如圖展示了一個(gè)由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過程:區(qū)間(0,k)中的實(shí)數(shù)m對(duì)應(yīng)線段AB上的點(diǎn)M,如圖1;將線段AB圍成一個(gè)離心率為
          3
          2
          的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長軸在x軸上,已知此時(shí)點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對(duì)應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對(duì)應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

          現(xiàn)給出下列5個(gè)命題①f(
          k
          2
          )=6
          ;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)(
          k
          2
          ,0)
          對(duì)稱;⑤函數(shù)f(m)=3
          3
          時(shí)AM過橢圓的右焦點(diǎn).其中所有的真命題是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

          已知橢圓C的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
          (1)當(dāng)m=1時(shí),求橢圓C的方程;
          (2)在(1)的條件下,直線l過焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長|AB|等于△PF1F2的周長,求直線l的方程;
          (3)由拋物線弧y2=4mx和橢圓弧
          (m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

          已知橢圓C的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
          (1)當(dāng)m=1時(shí),求橢圓C的方程;
          (2)在(1)的條件下,直線l過焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長|AB|等于△PF1F2的周長,求直線l的方程;
          (3)由拋物線弧y2=4mx和橢圓弧
          (m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>