日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•深圳一模)已知各項為實數(shù)的數(shù)列{an}是等比數(shù)列,且a1=2,a5+a7=8(a2+a4).?dāng)?shù)列{bn}滿足:對任意正整數(shù)n,有a1b1+a2b2+…+anbn=(n-1)•2n+1+2
          (1)求數(shù)列{an}與數(shù)列{bn}的通項公式;
          (2)在數(shù)列{an}的任意相鄰兩項ak與ak+1之間插入k個(-1)kbk(k∈N*)后,得到一個新的數(shù)列{cn}.求數(shù)列{cn}的前2012項之和.
          分析:(1)利用等比數(shù)列的通項公式,求出公比,從而求出數(shù)列{an}通項公式,再利用條件求數(shù)列{bn}的通項公式;
          (2)先判定數(shù)列{an}與數(shù)列{cn}項數(shù)之間的關(guān)系,利用轉(zhuǎn)化思想求和即可.
          解答:解:(1)設(shè)等比數(shù)列{an}的公比為q,由a5+a7=8(a2+a4),
          a1q4(1+q2)=8a1q(1+q2),
          又∵a1=2,q≠0,1+q2>0,∴q=2,
          數(shù)列{an}的通項公式為an=2n,n∈N*
          由題意有a1b1=(1-1)•21+1+2=2,∴b1=1,
          當(dāng)n≥2時,anbn=(n-1)•2n+1-[(n-2)•2n+2]=n•2n
          ∴bn=n,.
          故數(shù)列{bn}的通項公式為bn=n,n∈N*
          (2)設(shè)數(shù)列{an}的第k項是數(shù)列{cn}的第mk項,即ak=cmk,k∈N*,
          當(dāng)k≥2時,mk=k+[1+2+…+(k-1)]=
          k(k+1)
          2
          ,
          m62=
          62×63
          2
          =1953,m63=
          63×64
          2
          =2016,
          設(shè)Sn表示數(shù)列{cn}的前n項之和,
          則S2016=(a1+a2+…+a63)+[(-1)1•b1+(-1)2•2b2+…+(-1)62•62•b62],
          其中a1+a2+…+a63=
          2(1-263)
          1-2
          =264-2,
          ∵(-1)n•nbn=(-1)n•n2
          ∴[(-1)1•b1+(-1)2•2b2+…+(-1)62•62•b62]=(-1)1•12+(-1)2•22+…+(-1)62•622
          =(22-12)+(42-32)+…+(622-612)=(4×1-1)+(4×2-1)+(4×3-1)+…+(4×31-1)
          =4×
          1+31
          2
          ×31-31=1953,
          ∴S2016=(264-2)+1953=264+1951,
          從而S2012=S2016-(C2013+C2014+C2015+C2016)=264+1951-3(-1)62×b62-a63
          =264+1951-3×62-263
          =263+1765.
          所以數(shù)列{cn}的前2012項之和為263+1765.
          點評:本題考查了等比數(shù)列的通項公式,數(shù)列的通項與前n項和之間的關(guān)系,數(shù)列分組求和等知識,考查化歸與轉(zhuǎn)化的思想以及創(chuàng)新意識.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)隨機調(diào)查某社區(qū)80個人,以研究這一社區(qū)居民在20:00-22:00時間段的休閑方式與性別有關(guān)系,得到下面的數(shù)據(jù)表:
          休閑方式
          性別
          看電視 看書 合計
          10 50 60
          10 10 20
          合計 20 60 80
          (1)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機變量X,求X的分布列和期望;
          (2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00-22:00時間段的休閑方式與性別有關(guān)系”?
          參考公式:K2=
          n(ad-bc)2
          (a+b)(c+d)(a+c)(b+d)
          ,其中n=a+b+c+d
          參考數(shù)據(jù):
          P(K2≥K0 0.15 0.10 0.05 0.025 0.010
          K0 2.072 2.706 3.841 5.042 6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知點P(x,y)在不等式組
          x-2≤0
          y-1≤0
          x+2y-2≥0
          表示的平面區(qū)域上運動,則z=x-y的最小值是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知等比數(shù)列{an}的第5項是二項式(
          x
          -
          1
          3x
          )6
          展開式的常數(shù)項,則a3a7=
          25
          9
          25
          9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)如圖,平行四邊形ABCD中,AB⊥BD,AB=2,BD=
          2
          ,沿BD將△BCD折起,使二面角A-BD-C是大小為銳角α的二面角,設(shè)C在平面ABD上的射影為O.

          (1)當(dāng)α為何值時,三棱錐C-OAD的體積最大?最大值為多少?
          (2)當(dāng)AD⊥BC時,求α的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知數(shù)列{an}滿足:a1=
          1
          2
          ,an+1=
          an
          enan+e
          ,n∈N*
          (其中e為自然對數(shù)的底數(shù)).
          (1)求數(shù)列{an}的通項an;
          (2)設(shè)Sn=a1+a2+…+an,Tn=a1•a2•a3•…•an,求證:Sn
          n
          n+1
          ,Tne-n2

          查看答案和解析>>

          同步練習(xí)冊答案