【題目】已知離心率為的橢圓
的左頂點(diǎn)為A,且橢圓E經(jīng)過
與坐標(biāo)軸不垂直的直線l與橢圓E交于C,D兩點(diǎn),且直線AC和直線AD的斜率之積為
.
(I)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:直線l過定點(diǎn).
【答案】(I);(II)證明見解析.
【解析】
(Ⅰ)根據(jù)離心率,可得的關(guān)系,代入解析式,代入
的坐標(biāo),即可求得
,進(jìn)而得橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)出直線的方程
,將直線方程與橢圓方程聯(lián)立,根據(jù)有兩個(gè)不同的交點(diǎn)可知
,利用韋達(dá)定理表示出
,由直線AC和直線AD的斜率之積為
可得關(guān)于
和
的方程,即可求得
和
的關(guān)系,代入直線方程即可求得所過定點(diǎn)的坐標(biāo);也可將方程設(shè)為
,將直線方程與橢圓方程聯(lián)立,根據(jù)有兩個(gè)不同的交點(diǎn)可知
,利用韋達(dá)定理表示出
,由直線AC和直線AD的斜率之積為
可得關(guān)于
和
的方程,化簡(jiǎn)求得
的值,即可求得所過定點(diǎn)的坐標(biāo).
(I)
又橢圓E經(jīng)過點(diǎn)
橢圓E的標(biāo)準(zhǔn)方程為
(II)方法一:的方程為
,
設(shè),
聯(lián)立方程組,
化簡(jiǎn)得,
由解得
,
且.
,
,
化簡(jiǎn)可得:
或
(舍),滿足
直線l的方程為
,
直線l經(jīng)過定點(diǎn)
方法二:設(shè)l的方程為,
設(shè),
聯(lián)立方程組,
化簡(jiǎn)得,
解得:
,
且
,
,
化簡(jiǎn)可得:
或者
(舍)滿足
直線l經(jīng)過定點(diǎn)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),判斷函數(shù)
的單調(diào)性;
(2)若恒成立,求a的取值范圍;
(3)已知,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面是邊長(zhǎng)為
的菱形,
,點(diǎn)E是棱BC的中點(diǎn),
,點(diǎn)P在平面ABCD的射影為O,F(xiàn)為棱PA上一點(diǎn).
1
求證:平面
平面BCF;
2
若
平面PDE,
,求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面
是等邊三角形,且平面
平面
、E為
的中點(diǎn),
,
,
,
.
(1)求證:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面
為矩形,
平面
,
,
分別為
,
的中點(diǎn).
(1)證明:平面
;
(2)若與平面
所成的角為
,
,求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓
的普通方程為
.在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)寫出圓的參數(shù)方程和直線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在
上,點(diǎn)Q在
上,求
的最小值及此時(shí)點(diǎn)
的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在點(diǎn)
處的切線方程;
(2)若不等式恒成立,求k的取值范圍;
(3)求證:當(dāng)時(shí),不等式
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的四個(gè)頂點(diǎn)都在球
的表面上,
平面
,
,
,
,
,則:(1)球
的表面積為__________;(2)若
是
的中點(diǎn),過點(diǎn)
作球
的截面,則截面面積的最小值是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,
為其焦點(diǎn),
為其準(zhǔn)線,過
任作一條直線交拋物線于
兩點(diǎn),
、
分別為
、
在
上的射影,
為
的中點(diǎn),給出下列命題:
(1);(2)
;(3)
;
(4)與
的交點(diǎn)的
軸上;(5)
與
交于原點(diǎn).
其中真命題的序號(hào)為_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com