日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】市場份額又稱市場占有率,它在很大程度上反映了企業(yè)的競爭地位和盈利能力,是企業(yè)非常重視的一個指標(biāo).近年來,服務(wù)機器人與工業(yè)機器人以迅猛的增速占領(lǐng)了中國機器人領(lǐng)域龐大的市場份額,隨著“一帶一路”的積極推動,包括機器人產(chǎn)業(yè)在內(nèi)的眾多行業(yè)得到了更廣闊的的發(fā)展空間,某市場研究人員為了了解某機器人制造企業(yè)的經(jīng)營狀況,對該機器人制造企業(yè)2017年1月至6月的市場份額進行了調(diào)查,得到如下資料:

          月份

          1

          2

          3

          4

          5

          6

          市場份額

          11

          163

          16

          15

          20

          21

          請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并預(yù)測該企業(yè)2017年7月份的市場份額.

          如圖是該機器人制造企業(yè)記錄的2017年6月1日至6月30日之間的產(chǎn)品銷售頻數(shù)(單位:天)統(tǒng)計圖.設(shè)銷售產(chǎn)品數(shù)量為,經(jīng)統(tǒng)計,當(dāng)時,企業(yè)每天虧損約為200萬元;

          當(dāng)時,企業(yè)平均每天收入約為400萬元;

          當(dāng)時,企業(yè)平均每天收入約為700萬元.

          ①設(shè)該企業(yè)在六月份每天收入為,求的數(shù)學(xué)期望;

          ②如果將頻率視為概率,求該企業(yè)在未來連續(xù)三天總收入不低于1200萬元的概率.

          附:回歸直線的方程是,其中

          , ,

          【答案】(1);預(yù)測該企業(yè)2017年7月份的市場份額為23%.

          (2) ①;②.

          【解析】試題分析:(1)根據(jù)題中數(shù)據(jù)得到, , , ,代入樣本中心值得到,進而得到方程,將x=7代入方程即可;(2由題干知設(shè)該企業(yè)每天虧損約為200萬元為事件,平均每天收入約達到400萬元為事件,平均每天收入約達到700萬元為事件,則, , ,進而得到分布列和均值;由第一小問得到未來連續(xù)三天該企業(yè)收入不低于1200萬元包含五種情況,求概率之和即可.

          解析:

          (1)由題意,

          ,

          ,

          .

          當(dāng)時,

          所以預(yù)測該企業(yè)2017年7月的市場份額為23%.

          (2)①設(shè)該企業(yè)每天虧損約為200萬元為事件,平均每天收入約達到400萬元為事件,平均每天收入約達到700萬元為事件,

          , , .

          的分布列為

          -200

          400

          700

          0.1

          0.2

          0.3

          所以(萬元).

          ②由①知,未來連續(xù)三天該企業(yè)收入不低于1200萬元包含五種情況.

          .

          所以該企業(yè)在未來三天總收入不低于1200萬元的概率為0.876.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下面四個正方體圖形中,、為正方體的兩個頂點,、、分別為其所在棱的中點,能得出平面的圖形是(

          A.B.

          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中華民族具有五千多年連綿不斷的文明歷史,創(chuàng)造了博大精深的中華文化,為人類文明進步作出了不可磨滅的貢獻.為弘揚傳統(tǒng)文化,某校組織了國學(xué)知識大賽,該校最終有四名選手、、、參加了總決賽,總決賽設(shè)置了一、二、三等獎各一個,無并列.比賽結(jié)束后,說:“你沒有獲得一等獎”,說:“你獲得了二等獎”;對大家說:“我未獲得三等獎”,、、說:“你媽三人中有一人未獲獎”,四位選手中僅有一人撒謊,則選手獲獎情形共計__________種.(用數(shù)字作答)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】山西省2021年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學(xué)、外語,自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目是從物理、化學(xué)、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級并以此打分得到最后得分。根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到八個分?jǐn)?shù)區(qū)間,得到考生的等級成績。舉例說明1:甲同學(xué)化學(xué)學(xué)科原始分為65分,化學(xué)學(xué)科 等級的原始分分布區(qū)間為,則該同學(xué)化學(xué)學(xué)科的原始成績屬等級,而等級的轉(zhuǎn)換分區(qū)間為那么,甲同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換分為:設(shè)甲同學(xué)化學(xué)科的轉(zhuǎn)換等級分為 ,求得.四舍五入后甲同學(xué)化學(xué)學(xué)科賦分成績?yōu)?6分。舉例說明2:乙同學(xué)化學(xué)學(xué)科原始分為69分,化學(xué)學(xué)科等級的原始分分布區(qū)間為則該同學(xué)化學(xué)學(xué)科的原始成績屬等級.而等級的轉(zhuǎn)換分區(qū)間為這時不用公式,乙同學(xué)化學(xué)學(xué)科賦分成績直接取下端點70分,F(xiàn)有復(fù)興中學(xué)高一年級共3000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布。且等級為 所在原始分分布區(qū)間為,且等級為所在原始分分布區(qū)間為,且等級為所在原始分分布區(qū)間為

          (1)若小明同學(xué)在這次考試中物理原始分為84分,小紅同學(xué)在這次考試中物理原始分為72分,求小明和小紅的物理學(xué)科賦分成績;(精確到整數(shù)).

          (2)若以復(fù)興中學(xué)此次考試頻率為依據(jù),在學(xué)校隨機抽取4人,記這4人中物理原始成績在區(qū)間 的人數(shù),求的數(shù)學(xué)期望和方差.(精確到小數(shù)點后三位數(shù)).

          附:若隨機變量滿足正態(tài)分布,給出以下數(shù)據(jù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,平面,四邊形是菱形,,,上任意一點。

          (1)求證:;

          (2)當(dāng)面積的最小值是9時,在線段上是否存在點,使與平面所成角的正切值為2?若存在?求出的值,若不存在,請說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱中,側(cè)面為矩形,,為棱的中點,交于點,側(cè)面,的中點.

          (1)證明:平面;

          (2)若,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中為常數(shù),是自然對數(shù)的底數(shù).

          (1)設(shè),若函數(shù)在區(qū)間上有極值點,求實數(shù)的取值范圍;

          (2)證明:當(dāng)時,恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某車間20名工人年齡數(shù)據(jù)如下表:

          年齡(歲)

          19

          24

          26

          30

          34

          35

          40

          合計

          工人數(shù)(人)

          1

          3

          3

          5

          4

          3

          1

          20

          (1)求這20名工人年齡的眾數(shù)與平均數(shù);

          (2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;

          (3)從年齡在24和26的工人中隨機抽取2人,求這2人均是24歲的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為橢圓上的點,是兩焦點,若,則的面積是( )

          A. B. C. D.

          查看答案和解析>>