日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)
          (Ⅰ)當(dāng)x<1時(shí),求函數(shù)f(x)的極值;
          (Ⅱ)求函數(shù)f(x)在[-1,e](e為自然對(duì)數(shù)的底數(shù))上的最大值;
          (Ⅲ)對(duì)任意給定的正實(shí)數(shù)a,曲線y=f(x)上是否存在兩點(diǎn)P,Q,使得POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?
          【答案】分析:(I)先求出導(dǎo)數(shù)等于零的值,然后根據(jù)導(dǎo)數(shù)符號(hào)研究函數(shù)的單調(diào)性,判定極值點(diǎn),代入原函數(shù),求出極值即可;
          (II)根據(jù)(I)可知f(x)在[-1,1)上的最大值為2.當(dāng)1≤x≤2時(shí),f(x)=alnx.當(dāng)a≤0時(shí),f(x)≤0,f(x)最大值為0;當(dāng)a>0時(shí),f(x)在[1,e]上單調(diào)遞增.當(dāng)a≤2時(shí),f(x)在區(qū)間[-1,e]上的最大值為2;當(dāng)a>2時(shí),f(x)在區(qū)間[-1,e]上的最大值為a.
          (II)假設(shè)曲線y=f(x)上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在y軸兩側(cè).設(shè)P(t,f(t))(t>0),則Q(-t,t3+t2),顯然t≠1.由此入手能得到對(duì)任意給定的正實(shí)數(shù)a,曲線y=f(x)上存在兩點(diǎn)P、Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上.
          解答:解:(Ⅰ)當(dāng)x<1時(shí),f(x)=-x3+x2,f'(x)=-3x2+2x
          令f′(x)=0得x=0或x=
          當(dāng)x<0時(shí),f′(x)<0,當(dāng)0<x時(shí),f′(x)>0,當(dāng)x>時(shí),f′(x)<0
          當(dāng)x=0時(shí),f(x)取得極小值f(0)=0
          當(dāng)x=時(shí),f(x)取得極大值f()=
          (Ⅱ)①由(1)知當(dāng)-1≤x≤1時(shí),f(x)在x=處取得極大值
          又f(-1)=2,f(1)=0,所以f(x)在[-1,1)上的最大值為2.(4分)
          ②當(dāng)1≤x≤e時(shí),f(x)=alnx,當(dāng)a≤0時(shí),f(x)≤0;當(dāng)a>0時(shí),
          f(x)在[1,e]上單調(diào)遞增,所以f(x)在[1,e]上的最大值為a.
          所以當(dāng)a≥2時(shí),f(x)在[-1,e]上的最大值為a;
          當(dāng)a<2時(shí),f(x)在[-1,e]上的最大值為2.(8分)
          (Ⅲ)假設(shè)曲線y=f(x)上存在兩點(diǎn)P,Q,使得POQ是以O(shè)為直角頂點(diǎn)的直角三角形,
          則P,Q只能在y軸的兩側(cè),不妨設(shè)P(t,f(t))(t>0),則Q(-t,t3+t2),且t≠1.
          因?yàn)椤鱌OQ是以O(shè)為直角頂點(diǎn)的直角三角形,所以=0,
          即:-t2+f(t)•(t3+t2)=0(1)…(10分)
          是否存在點(diǎn)P,Q等價(jià)于方程(1)是否有解.
          若0<t<1,則f(t)=-t3+t2,代入方程(1)得:t4-t2+1=0,此方程無(wú)實(shí)數(shù)解.
          若t≥1,則f(t)=alnt,代入方程(1)得到:=(t+1)lnt,(12分)
          設(shè)h(x)=(x+1)lnx(x≥1),則h'(x)=lnx++1>0在[1,+∞)上恒成立.
          所以h(x)在[1,+∞)上單調(diào)遞增,從而h(x)≥h(1)=0,
          所以當(dāng)a>0時(shí),方程=(t+1)lnt有解,即方程(1)有解.
          所以,對(duì)任意給定的正實(shí)數(shù)a,曲線y=f(x)上存在兩點(diǎn)P,Q,
          使得POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上.(14分)
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件.解答關(guān)鍵是利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)y=logax,當(dāng)x>2 時(shí)恒有|y|>1,則a的取值范圍是
          [
          1
          2
          ,1)∪(1,2]
          [
          1
          2
          ,1)∪(1,2]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)y=log3x,當(dāng)x>1時(shí),則( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省實(shí)驗(yàn)中學(xué)高考考前最后沖刺數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知函數(shù)
          (Ⅰ)當(dāng)x∈[-,]時(shí),求函數(shù)f(x)的值域;
          (Ⅱ)將函數(shù)f(x)的圖象按向量=(h,)(0<h<π)平移,使得平移后的函數(shù)g(x)的圖象關(guān)于直線對(duì)稱,求函數(shù)g(x)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年湖北省實(shí)驗(yàn)中學(xué)高考考前最后沖刺數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知函數(shù)
          (Ⅰ)當(dāng)x∈[-,]時(shí),求函數(shù)f(x)的值域;
          (Ⅱ)將函數(shù)f(x)的圖象按向量=(h,)(0<h<π)平移,使得平移后的函數(shù)g(x)的圖象關(guān)于直線對(duì)稱,求函數(shù)g(x)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          (12分)已知函數(shù)

          (1)當(dāng)x∈[2,4]時(shí).求該函數(shù)的值域;

          (2)若恒成立,求m的取值范圍

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案