設(shè)拋物線的焦點(diǎn)為
,經(jīng)過點(diǎn)
的動(dòng)直線
交拋物線
于點(diǎn)
,
且
.
(1)求拋物線的方程;
(2)若(
為坐標(biāo)原點(diǎn)),且點(diǎn)
在拋物線
上,求直線
傾斜角;
(3)若點(diǎn)是拋物線
的準(zhǔn)線上的一點(diǎn),直線
的斜率分別為
.求證:
當(dāng)為定值時(shí),
也為定值.
(1)(2)傾斜角為
或
(3)
【解析】
試題分析:⑴根據(jù)題意可知:,設(shè)直線
的方程為:
,則:
聯(lián)立方程:,消去
可得:
(*),
根據(jù)韋達(dá)定理可得:,∴
,∴
:
⑵設(shè),則:
,由(*)式可得:
∴,
又,∴
∴
∵,∴
,∴
,∴
∴直線的斜率
,∴傾斜角為
或
⑶可以驗(yàn)證該定值為,證明如下:
設(shè),則:
,
,
∵,∴
∴
∴為定值
考點(diǎn):拋物線
點(diǎn)評:考查了直線與拋物線的位置關(guān)系的運(yùn)用,體現(xiàn)了運(yùn)用代數(shù)的方法求解解析幾何的運(yùn)用,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)b>0,橢圓方程為
,拋物線方程為
.如圖4所示,過點(diǎn)F(0,b+2)作x軸的平行線,與拋物線在
第一象限的交點(diǎn)為G.已知拋物線在點(diǎn)G的切線經(jīng)
過橢圓的右焦點(diǎn).
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)A,B分別是橢圓長軸的左、右端點(diǎn),試探究在
拋物線上是否存在點(diǎn)P,使得△ABP為直角三角形?
若存在,請指出共有幾個(gè)這樣的點(diǎn)?并說明理由
(不必具體求出這些點(diǎn)的坐標(biāo)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省畢業(yè)班質(zhì)量檢查文科數(shù)學(xué)試卷(解析版) 題型:解答題
某同學(xué)用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個(gè)點(diǎn)
,度量點(diǎn)
的坐標(biāo)
,如圖.
(Ⅰ)拖動(dòng)點(diǎn),發(fā)現(xiàn)當(dāng)
時(shí),
,試求拋物線
的方程;
(Ⅱ)設(shè)拋物線的頂點(diǎn)為
,焦點(diǎn)為
,構(gòu)造直線
交拋物線
于不同兩點(diǎn)
、
,構(gòu)造直線
、
分別交準(zhǔn)線于
、
兩點(diǎn),構(gòu)造直線
、
.經(jīng)觀察得:沿著拋物線
,無論怎樣拖動(dòng)點(diǎn)
,恒有
.請你證明這一結(jié)論.
(Ⅲ)為進(jìn)一步研究該拋物線的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點(diǎn)
”改變?yōu)槠渌岸c(diǎn)
”,其余條件不變,發(fā)現(xiàn)“
與
不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“
”成立?如果可以,請寫出相應(yīng)的正確命題;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某同學(xué)用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個(gè)點(diǎn)
,度量點(diǎn)
的坐標(biāo)
,如圖.
(Ⅰ)拖動(dòng)點(diǎn),發(fā)現(xiàn)當(dāng)
時(shí),
,試求拋物線
的方程;
(Ⅱ)設(shè)拋物線的頂點(diǎn)為
,焦點(diǎn)為
,構(gòu)造直線
交拋物線
于不同兩點(diǎn)
、
,構(gòu)造直線
、
分別交準(zhǔn)線于
、
兩點(diǎn),構(gòu)造直線
、
.經(jīng)觀察得:沿著拋物線
,無論怎樣拖動(dòng)點(diǎn)
,恒有
.請你證明這一結(jié)論.
(Ⅲ)為進(jìn)一步研究該拋物線的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點(diǎn)
”改變?yōu)槠渌岸c(diǎn)
”,其余條件不變,發(fā)現(xiàn)“
與
不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“
”成立?如果可以,請寫出相應(yīng)的正確命題;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某同學(xué)用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個(gè)點(diǎn)
,度量點(diǎn)
的坐標(biāo)
,如圖.
(Ⅰ)拖動(dòng)點(diǎn),發(fā)現(xiàn)當(dāng)
時(shí),
,試求拋物線
的方程;
(Ⅱ)設(shè)拋物線的頂點(diǎn)為
,焦點(diǎn)為
,構(gòu)造直線
交拋物線
于不同兩點(diǎn)
、
,構(gòu)造直線
、
分別交準(zhǔn)線于
、
兩點(diǎn),構(gòu)造直線
、
.經(jīng)觀察得:沿著拋物線
,無論怎樣拖動(dòng)點(diǎn)
,恒有
.請你證明這一結(jié)論.
(Ⅲ)為進(jìn)一步研究該拋物線的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點(diǎn)
”改變?yōu)槠渌岸c(diǎn)
”,其余條件不變,發(fā)現(xiàn)“
與
不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“
”成立?如果可以,請寫出相應(yīng)的正確命題;否則,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com