日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段PF2與y軸的交點(diǎn)M滿足,⊙O是以F1F2為直徑的圓,一直線L:y=kx+m與⊙O相切,并與橢圓交于不同的兩點(diǎn)A,B
          (1)求橢圓的標(biāo)準(zhǔn)方程.
          (2)當(dāng),且滿足時(shí),求△AOB的面積S的取值范圍.
          【答案】分析:(1)由=,知OM是△PF1F2的中位線,由OM⊥F1F2,知PF1⊥F1F2,由此能求出橢圓的標(biāo)準(zhǔn)方程.
          (2)由圓O與直線l相切,知,聯(lián)立,得(1+2k2)x2+4kmx+2m2-2=0,由直線l與橢圓交于兩個(gè)不同點(diǎn),得到k2>0,由此能推導(dǎo)出△AOB的面積S的取值范圍.
          解答:解:(1)∵=
          ∴點(diǎn)M是線段PF2的中點(diǎn),
          ∴OM是△PF1F2的中位線,
          又∵OM⊥F1F2,∴PF1⊥F1F2,
          ,解得a2=2,b2=1,c2=1,
          ∴橢圓的標(biāo)準(zhǔn)方程為
          (2)∵圓O與直線l相切,∴,即m2=k2+1,
          聯(lián)立,消去y,得(1+2k2)x2+4kmx+2m2-2=0,
          ∵直線l與橢圓交于兩個(gè)不同點(diǎn),∴△=(4km)2-4(1+2k2)(2m2-2)>0,
          ∴k2>0,
          設(shè)A(x1,y1),B(x2,y2),則,x1•x2=,
          ∴y1y2=(kx1+m)(kx2+m)
          =
          =,
          =x1x2+y1y2=,
          ,
          ,
          S=S△ABO=
          =
          =
          =,
           設(shè)u=k4+k2,則,S=,u∈[],
          ∵S關(guān)于u在[,2]單調(diào)遞增,S()=,S(2)=,

          點(diǎn)評(píng):本題考查橢圓方程的求法,考查三角形面積取值范圍的求法,解題時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知F1,F(xiàn)2是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的兩個(gè)焦點(diǎn),若在橢圓上存在一點(diǎn)P,使∠F1PF2=120°,則橢圓離心率的范圍是
          [
          3
          2
          ,1
          [
          3
          2
          ,1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知F1、F2是橢圓
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)
          的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P使得∠F1PF2=120°,求橢圓離心率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知F1、F2是橢圓的兩個(gè)焦點(diǎn).△F1AB為等邊三角形,A,B是橢圓上兩點(diǎn)且AB過(guò)F2,則橢圓離心率是
          3
          3
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知 F1、F2是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的兩個(gè)焦點(diǎn),橢圓上存在一點(diǎn)P,使得SF1PF2=
          3
          b2
          ,則該橢圓的離心率的取值范圍是
          [
          3
          2
          ,1)
          [
          3
          2
          ,1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知F1,F(xiàn)2是橢圓
          x2
          2
          +y2=1
          的兩個(gè)焦點(diǎn),點(diǎn)P是橢圓上一個(gè)動(dòng)點(diǎn),那么|
          PF1
          +
          PF2
          |
          的最小值是( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案