日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點(diǎn)E、F分別在棱BB1、CC1上,且BE= BB1 , C1F= CC1

          (1)求平面AEF與平面ABC所成角α的余弦值;
          (2)若G為BC的中點(diǎn),A1G與平面AEF交于H,且設(shè) = ,求λ的值.

          【答案】
          (1)解:在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點(diǎn)E、F分別在棱BB1、CC1上,且BE= BB1,C1F= CC1

          ∴建立以A為坐標(biāo)原點(diǎn),AB,AC,AA1分別為x,y,z軸的空間直角坐標(biāo)系如圖:

          則A(0,0,0),A1(0,0,6),B(2,0,0),C(0,2,0),E(2,0,2),F(xiàn)(0,2,4),

          =(2,0,2), =(0,2,4),

          設(shè)平面AEF的法向量為 =(x,y,z)

          令z=1.則x=﹣1,y=﹣2,

          =(﹣1,﹣2,1),

          平面ABC的法向量為 =(0,0,1),

          則cos< >= = =

          即平面AEF與平面ABC所成角α的余弦值是


          (2)解:若G為BC的中點(diǎn),A1G與平面AEF交于H,

          則G(1,1,0),

          =

          = =λ(1,1,﹣6)=(λ,λ,﹣6λ),

          = + =(λ,λ,6﹣6λ)

          ∵A,E,F(xiàn),H四點(diǎn)共面,

          ∴設(shè) =x +y ,

          即(λ,λ,6﹣6λ)=x(2,0,2)+y(0,2,4),

          ,得λ= ,x=y= ,

          故λ的值為


          【解析】(1)建立空間坐標(biāo)系,求出平面的法向量,利用向量法進(jìn)行求解即可.(2)利用四點(diǎn)共面, =x +y ,建立方程關(guān)系進(jìn)行求解即可.
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解棱柱的結(jié)構(gòu)特征(兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,焦距長(zhǎng)為2,左準(zhǔn)線為

          1)求橢圓的方程及其離心率;

          2)若過點(diǎn)的直線交橢圓, 兩點(diǎn),且為線段的中點(diǎn),求直線的方程;

          3)過橢圓右準(zhǔn)線上任一點(diǎn)引圓 的兩條切線,切點(diǎn)分別為, .試探究直線是否過定點(diǎn)?若過定點(diǎn),請(qǐng)求出該定點(diǎn);否則,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是⊙O的一條切線,切點(diǎn)為B,直線ADE、CFD、CGE都是⊙O的割線,已知AC=AB.

          (1)若CG=1,CD=4.求 的值.
          (2)求證:FG∥AC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,已知拋物線:,拋物線的準(zhǔn)線與交于點(diǎn)

          (1)過作曲線的切線,設(shè)切點(diǎn)為, ,證明:以為直徑的圓經(jīng)過點(diǎn);

          (2)過點(diǎn)作互相垂直的兩條直線、, 與曲線交于、兩點(diǎn), 與曲線交于、兩點(diǎn),線段, 的中點(diǎn)分別為,試討論直線是否過定點(diǎn)?若過,求出定點(diǎn)的坐標(biāo);若不過,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)f(x)=x3+mlog2(x+ )(m∈R,m>0),則不等式f(m)+f(m2﹣2)≥0的解是 . (注:填寫m的取值范圍)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)= ,g(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)的圖象C在x=﹣ 處的切線方程是y=
          (1)若求a,b的值,并證明:當(dāng)x∈(﹣∞,2]時(shí),g(x)的圖象C上任意一點(diǎn)都在切線y= 上或在其下方;
          (2)求證:當(dāng)x∈(﹣∞,2]時(shí),f(x)≥g(x).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)

          (1)當(dāng)q=1時(shí),求f(x)在[﹣1,9]上的值域;

          (2)問:是否存在常數(shù)q(0<q<10),使得當(dāng)x[q,10]時(shí),f(x)的最小值為﹣51?若存在,求出q的值,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下面給出的命題中:

          1)已知函數(shù),則

          2直線與直線互相垂直的必要不充分條件;

          3)已知隨機(jī)變量服從正態(tài)分布,且,則;

          4)已知圓,圓,則這兩個(gè)圓恰有兩條公切線.

          其中真命題的個(gè)數(shù)為

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)處的切線經(jīng)過點(diǎn)

          (1)討論函數(shù)的單調(diào)性;

          (2)若不等式恒成立,求實(shí)數(shù)的取值范圍.

          【答案】(1)單調(diào)遞減;(2)

          【解析】試題分析: (1)利用導(dǎo)數(shù)幾何意義,求出切線方程,根據(jù)切線過點(diǎn),求出函數(shù)的解析式; (2)由已知不等式分離出,得,令,求導(dǎo)得出 上為減函數(shù),再求出的最小值,從而得出的范圍.

          試題解析:(1)

          設(shè)切點(diǎn)為

          代入

          單調(diào)遞減

          (2)恒成立

          單調(diào)遞減

          恒大于0

          點(diǎn)睛: 本題主要考查了導(dǎo)數(shù)的幾何意義以及導(dǎo)數(shù)的應(yīng)用,包括求函數(shù)的單調(diào)性和最值,屬于中檔題. 注意第二問中的恒成立問題,等價(jià)轉(zhuǎn)化為求的最小值,直接求的最小值比較復(fù)雜,所以先令,求出在 上的單調(diào)性,再求出的最小值,得到的范圍.

          型】解答
          結(jié)束】
          22

          【題目】已知是橢圓的兩個(gè)焦點(diǎn), 為坐標(biāo)原點(diǎn),圓是以為直徑的圓,一直線與圓相切并與橢圓交于不同的兩點(diǎn).

          (1)求關(guān)系式;

          (2)若,求直線的方程;

          (3)當(dāng),且滿足時(shí),求面積的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案