日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 橢圓E:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,焦距為2,過F1作垂直于橢圓長軸的弦PQ,|PQ|為3.
          (1)求橢圓E的方程;
          (2)若過F1的直線l交橢圓于A,B兩點(diǎn),判斷是否存在直線l使得∠AF2B為鈍角,若存在,求出l的斜率k的取值范圍.
          (1) +=1   (2)存在,斜率k的取值范圍為-<k<

          解:(1)依題意
          解得a2=4,b2=3,
          ∴橢圓的方程為+=1.
          (2)①當(dāng)過F1的直線AB的斜率不存在時(shí),
          不妨取A(-1,),B(-1,-
          ·=,顯然∠AF2B不為鈍角.
          ②直線l的斜率為k,l方程為y=k(x+1),

          消去y,整理得(3+4k2)x2+8k2x+4k2-12=0.
          ∵直線l與橢圓交于兩點(diǎn),
          ∴Δ=(8k2)2-4(3+4k2)(4k2-12)=4×36(k2+1)>0.
          設(shè)A(x1,y1),B(x2,y2),
          則x1+x2=-,x1·x2=.
          =(x1-1,y1),=(x2-1,y2).
          ∵∠AF2B為鈍角,
          ·<0.
          即(x1-1)(x2-1)+y1y2<0,
          整理得(k2+1)x1x2+(k2-1)(x1+x2)+k2+1<0.
          即(k2+1)·-(k2-1)·+k2+1<0,
          整理得7k2<9,
          解得-<k<.
          ∴存在滿足條件的直線l,
          其斜率k的取值范圍為-<k<.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,已知橢圓E經(jīng)過點(diǎn)A(2,3),對稱軸為坐標(biāo)軸,焦點(diǎn)F1,F(xiàn)2在x軸上,離心率e=,斜率為2的直線l過點(diǎn)A(2,3).

          (1)求橢圓E的方程;
          (2)在橢圓E上是否存在關(guān)于直線l對稱的相異兩點(diǎn)?若存在,請找出;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C:的左、右焦點(diǎn)分別為,離心率,連接橢圓的四個(gè)頂點(diǎn)所得四邊形的面積為.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)設(shè)是直線上的不同兩點(diǎn),若,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)雙曲線C:(a>0,b>0)的一個(gè)焦點(diǎn)坐標(biāo)為(,0),離心率, A、B是雙曲線上的兩點(diǎn),AB的中點(diǎn)M(1,2).
          (1)求雙曲線C的方程;
          (2)求直線AB方程;
          (3)如果線段AB的垂直平分線與雙曲線交于C、D兩點(diǎn),那么A、B、C、D四點(diǎn)是否共圓?為什么?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長是短軸長的倍,其上一點(diǎn)到右焦點(diǎn)的最短距離為
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)若直線交橢圓兩點(diǎn),當(dāng)時(shí)求直線的方程

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知圓的圓心在坐標(biāo)原點(diǎn)O,且恰好與直線相切.
          (1)求圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)點(diǎn)A為圓上一動點(diǎn),AN軸于N,若動點(diǎn)Q滿足(其中m為非零常數(shù)),試求動點(diǎn)的軌跡方程.
          (3)在(2)的結(jié)論下,當(dāng)時(shí),得到動點(diǎn)Q的軌跡曲線C,與垂直的直線與曲線C交于 B、D兩點(diǎn),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,橢圓過點(diǎn)P(1, ),其左、右焦點(diǎn)分別為F1,F2,離心率e=,M,N是直線x=4上的兩個(gè)動點(diǎn),且·=0.

          (1)求橢圓的方程;
          (2)求|MN|的最小值;
          (3)以MN為直徑的圓C是否過定點(diǎn)?請證明你的結(jié)論。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          橢圓C1:+=1(a>b>0)的左、右頂點(diǎn)分別為A,B,點(diǎn)P是雙曲線C2:-=1在第一象限內(nèi)的圖象上一點(diǎn),直線AP,BP與橢圓C1分別交于C,D點(diǎn),若S△ACD=S△PCD.

          (1)求P點(diǎn)的坐標(biāo).
          (2)能否使直線CD過橢圓C1的右焦點(diǎn),若能,求出此時(shí)雙曲線C2的離心率;若不能,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知橢圓,過橢圓上一點(diǎn)作傾斜角互補(bǔ)的兩條直線、,分別交橢圓、兩點(diǎn).則直線的斜率為          .

          查看答案和解析>>

          同步練習(xí)冊答案