日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對于數(shù)列{xn},如果存在一個正整數(shù)m,使得對任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小值稱作數(shù)列{xn}的最小正周期,以下簡稱周期.例如當(dāng)xn=2時,{xn}是周期為1的周期數(shù)列,當(dāng)yn=sin(
          π
          2
          n)
          時,{yn}的周期為4的周期數(shù)列.
          (1)設(shè)數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時為0),且數(shù)列{an}是周期為3的周期數(shù)列,求常數(shù)λ的值;
          (2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且4Sn=(an+1)2
          ①若an>0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由;
          ②若anan+1<0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由.
          (3)設(shè)數(shù)列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數(shù)列{bn}的前n項(xiàng)和Sn,試問是否存在p、q,使對任意的n∈N*都有p≤
          Sn
          n
          ≤q
          成立,若存在,求出p、q的取值范圍;不存在,說明理由.
          分析:(1)直接利用數(shù)列{an}是周期為3的周期數(shù)列以及an+2=λ•an+1-an可以推得(λ+1)(an+2-an+1)=0即可求常數(shù)λ的值;
          (2)先利用4Sn=(an+1)2求得an-an-1=2或an=-an-1(n≥2).
          ①由an>0得an-an-1=2(n≥2),求出數(shù)列{an}的通項(xiàng)公式即可判斷數(shù)列{an}是否為周期數(shù)列;
          ②由anan+1<0的an=-an-1(n≥2),求出數(shù)列{an}的通項(xiàng)公式即可判斷數(shù)列{an}是否為周期數(shù)列;
          (3)先由數(shù)列{an}滿足an+2=-an+1-an(n∈N*),推得數(shù)列{an}以及數(shù)列{bn}是周期為3的周期數(shù)列,求出數(shù)列{bn}的前3項(xiàng),即可求出數(shù)列{bn}的前n項(xiàng)和Sn以及數(shù)列{bn}的前n項(xiàng)和Sn的取值范圍,即可求出對應(yīng)的p、q的取值范圍.
          解答:解:由(1)數(shù)列{an}是周期為3的數(shù)列,
          得an+3=an,且
          an+2=λ an+1-an 
          an+3an+2-an+1
          ?(λ+1)(an+2-an+1)=0,即λ=-1.

          (2)當(dāng)n=1時,s1=a1,4s1=(a1+1)2?a1=1,
          當(dāng)n≥2時,4an=4sn-4sn-1=(an+1)2-(an-1+1)2.?(an-1)2=(an-1+1)2,即an-an-1=2或an=-an-1(n≥2).
          ①由an>0有an-an-1=2(n≥2),則{an}為等差數(shù)列,即an=2n-1,
          由于對任意的n都有an+m≠an,所以數(shù)列{an}不是周期數(shù)列.
          ②由anan+1<0有an=-an-1(n≥2),數(shù)列{an}為等比數(shù)列,即an=(-1)n-1,
          即an+2=an對任意n都成立.
          即當(dāng)anan+1<0時是{an}周期為2的周期數(shù)列.

          (3)假設(shè)存在p,q.滿足題設(shè).
          于是
          an+2=-an+1-an
          an+3=-an+2-an+1
          ?an+3=an,又bn=an+1則bn+3=bn,
          所以{bn}是周期為3的周期數(shù)列,所以{bn}的前3項(xiàng)分別為2,3,-2.
          則sn=
          n       n=3k
          n+1     n=3k-2
          n+3     n=3k-1

          當(dāng)n=3k時,
          sn
          n
          =1;
          當(dāng)n=3k-2時,
          sn
          n
          =1+
          1
          n
          ?1<
          sn
          n
          ≤2;
          當(dāng)n=3k-1時,
          sn
          n
          =1+
          3
          n
          ?1<
          sn
          n
          5
          2
          ,
          綜上1≤
          sn
          n
          5
          2

          為使p
          sn
          n
          ≤q恒成立,只要p≤1,q
          5
          2
          即可.
          綜上,存在p≤1,q
          5
          2
          滿足題設(shè).
          點(diǎn)評:本題是在新定義下對數(shù)列知識的綜合考查,屬于數(shù)列中的難題.一般數(shù)列出大題,要么是非常容易,在第一第二大題;要么就是很難的題目.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)若一個數(shù)列各項(xiàng)取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足xnan=xn+1an+1=xn+2an+2(n∈N*).
          (Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
          (Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個三角形數(shù)表,當(dāng)x3=8,x7=128時,求第m行各數(shù)的和;
          (Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:
          n
          2
          -
          1
          3
          x1-1
          x2-1
          +
          x2-1
          x3-1
          +…+
          xn-1
          xn+1-1
          n
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          12、在數(shù)列{an}中,若存在非零整數(shù)T,使得am+T=am對于任意的正整數(shù)m均成立,那么稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.若數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期最小時,該數(shù)列的前2010項(xiàng)的和是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,設(shè)P0是拋物線y=x2上一點(diǎn),且在第一象限.過點(diǎn)P0作拋物線的切線,交x軸于Q1點(diǎn),過Q1點(diǎn)作x軸的垂線,交拋物線于P1點(diǎn),此時就稱P0確定了P1.依此類推,可由P1確定P2,….記Pn(xn,yn),n=0,1,2,….給出下列三個結(jié)論:
          ①xn>0;
          ②數(shù)列{xn}為單調(diào)遞減數(shù)列;
          ③對于?n∈N,?x0>1,使得y0+y1+y2+…+yn<2.
          其中所有正確結(jié)論的序號為
          ①②③
          ①②③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市西城區(qū)(北區(qū))高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

          如圖,設(shè)P是拋物線y=x2上一點(diǎn),且在第一象限.過點(diǎn)P作拋物線的切線,交x軸于Q1點(diǎn),過Q1點(diǎn)作x軸的垂線,交拋物線于P1點(diǎn),此時就稱P確定了P1.依此類推,可由P1確定P2,….記Pn(xn,yn),n=0,1,2,….給出下列三個結(jié)論:
          ①xn>0;
          ②數(shù)列{xn}為單調(diào)遞減數(shù)列;
          ③對于?n∈N,?x>1,使得y+y1+y2+…+yn<2.
          其中所有正確結(jié)論的序號為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省郴州市安仁一中高三(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

          在數(shù)列{an}中,若存在非零整數(shù)T,使得am+T=am對于任意的正整數(shù)m均成立,那么稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.若數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期最小時,該數(shù)列的前2010項(xiàng)的和是( )
          A.669
          B.670
          C.1339
          D.1340

          查看答案和解析>>

          同步練習(xí)冊答案