日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)f(x)是定義在R上的增函數(shù),且對于任意的x都有f(1-x)+f(1+x)=0恒成立.如果實數(shù)m、n滿足不等式組,那么m2+n2的取值范圍是( )
          A.(3,7)
          B.(9,25)
          C.(13,49)
          D.(9,49)
          【答案】分析:根據(jù)對于任意的x都有f(1-x)+f(1+x)=0恒成立,不等式可化為f(m2-6m+23)<f(2-n2+8n),利用f(x)是定義在R上的增函數(shù),可得∴(m-3)2+(n-4)2<4,確定(m-3)2+(n-4)2=4(m>3)內(nèi)的點到原點距離的取值范圍,即可求得m2+n2 的取值范圍.
          解答:解:∵對于任意的x都有f(1-x)+f(1+x)=0恒成立
          ∴f(1-x)=-f(1+x)
          ∵f(m2-6m+23)+f(n2-8n)<0,
          ∴f(m2-6m+23)<-f[(1+(n2-8n-1)],
          ∴f(m2-6m+23)<f[(1-(n2-8n-1)]=f(2-n2+8n)
          ∵f(x)是定義在R上的增函數(shù),
          ∴m2-6m+23<2-n2+8n
          ∴(m-3)2+(n-4)2<4
          ∵(m-3)2+(n-4)2=4的圓心坐標(biāo)為:(3,4),半徑為2
          ∴(m-3)2+(n-4)2=4(m>3)內(nèi)的點到原點距離的取值范圍為(,5+2),即(,7)
          ∵m2+n2 表示(m-3)2+(n-4)2=4內(nèi)的點到原點距離的平方
          ∴m2+n2 的取值范圍是(13,49).
          故選C.
          點評:本題考查函數(shù)的奇偶性與單調(diào)性,考查不等式的含義,解題的關(guān)鍵是確定半圓內(nèi)的點到原點距離的取值范圍.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          3、設(shè)f(x)是定義在R上的奇函數(shù),且f(3)+f(-2)=2,則f(2)-f(3)=
          -2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=2x+2x-1,則f(-1)=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在R上的奇函數(shù),且f(1)=0,當(dāng)x>0時,有f(x)>xf′(x)恒成立,則不等式xf(x)>0的解集為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在R上的奇函數(shù),且y=f(x)滿足f(1-x)=f(x),且f( 
          1
          2
           )=2
          ,則f(1)+f(
          3
          2
          )+f(2)+f(
          5
          2
          )+f(3)+f(
          7
          2
          )
          =
          -2
          -2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在R上的奇函數(shù),且對任意實數(shù)x,恒有f(x+2)=-f(x).當(dāng)x∈[0,2]時,f(x)=2x-x2+a(a是常數(shù)).則x∈[2,4]時的解析式為( 。
          A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

          查看答案和解析>>

          同步練習(xí)冊答案