日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=lnx﹣
          (1)當(dāng)a>0時(shí),判斷f(x)在定義域上的單調(diào)性;
          (2)若f(x)在[1,e]上的最小值為 ,求a的值.

          【答案】
          (1)解:函數(shù)的定義域?yàn)椋?,+∞),且f′(x)=

          ∵a>0,∴f′(x)>0

          ∴f(x)在定義域上單調(diào)遞增


          (2)解:由(1)知,f′(x)=

          ①若a≥﹣1,則x+a≥0,即f′(x)≥0在[1,e]上恒成立,此時(shí)f(x)在[1,e]上為增函數(shù)

          ∵f(x)在[1,e]上的最小值為 ,

          ∴f(x)min=f(1)=﹣a= ,

          ∴a=﹣ (舍去)

          ②若a≤﹣e,則x+a≤0,即f′(x)≤0在[1,e]上恒成立,此時(shí)f(x)在[1,e]上為減函數(shù),

          ∴f(x)min=f(e)=1﹣ = ,∴a=﹣ (舍去).

          ③若﹣e<a<﹣1,令f′(x)=0,得x=﹣a.

          當(dāng)1<x<﹣a時(shí),f′(x)<0,∴f(x)在(1,﹣a)上為減函數(shù);

          當(dāng)﹣a<x<e時(shí),f′(x)>0,∴f(x)在(﹣a,e)上為增函數(shù),

          ∴f(x)min=f(﹣a)=ln(﹣a)+1= ,∴a=﹣

          綜上可知:a=﹣


          【解析】(1)確定函數(shù)的定義域,根據(jù)f′(x)>0,可得f(x)在定義域上的單調(diào)性;(2)求導(dǎo)函數(shù),分類(lèi)討論,確定函數(shù)f(x)在[1,e]上的單調(diào)性,利用f(x)在[1,e]上的最小值為 ,即可求a的值.
          【考點(diǎn)精析】通過(guò)靈活運(yùn)用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個(gè)最大值,最小的是最小值即可以解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=ln(x﹣1)﹣kx+k+1.
          (1)當(dāng)k=1時(shí),證明:f(x)≤0;
          (2)求函數(shù)f(x)的單調(diào)區(qū)間;
          (3)證明: + +…+ (n∈N* , 且n≥2).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)f(x)=Asin(ωx+φ)滿(mǎn)足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),則ω的一個(gè)可能取值是(
          A.2
          B.3
          C.4
          D.5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)f(x)=Asin(ωx+ )(ω>0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為 的等差數(shù)列,要得到函數(shù)g(x)=Asinωx的圖象,只需將f(x)的圖象(
          A.向左平移 個(gè)單位
          B.向右平移 個(gè)單位
          C.向左平移 個(gè)單位
          D.向右平移 個(gè)單位

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,矩形ABCD的兩條對(duì)角線(xiàn)相交于點(diǎn)M(2,0),AB邊所在直線(xiàn)的方程為x-3y-6=0,點(diǎn)T(-1,1)在A(yíng)D邊所在直線(xiàn)上.求:

          (1) AD邊所在直線(xiàn)的方程;

          (2) DC邊所在直線(xiàn)的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知向量 =(cos ,﹣1), =( sin ,cos2 ),設(shè)函數(shù)f(x)= +1.
          (1)若x∈[0, ],f(x)= ,求cosx的值;
          (2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿(mǎn)足2bcosA≤2c﹣ a,求f(B)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本小題滿(mǎn)分10分) 已知P3,2),一直線(xiàn)過(guò)點(diǎn)P

          若直線(xiàn)在兩坐標(biāo)軸上截距之和為12,求直線(xiàn)的方程;

          若直線(xiàn)x、y軸正半軸交于A、B兩點(diǎn),當(dāng)面積為12時(shí)求直線(xiàn)的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=1n(x﹣1)﹣k(x﹣1)+1
          (1)求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)若f(x)≤0恒成立,試確定實(shí)數(shù)k的取值范圍;
          (3)證明: 且n>1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)m, n是兩條不同的直線(xiàn),是三個(gè)不同的平面, 給出下列四個(gè)命題:

          m⊥α,n∥α,m⊥n;; α∥β, β∥r, m⊥α,m⊥r;

          m∥α,n∥α,m∥n;; α⊥r, β⊥r,α∥β

          其中正確命題的序號(hào)是 ( )

          A. B. ②③ C. ③④ D. ①

          查看答案和解析>>

          同步練習(xí)冊(cè)答案