日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在三棱錐S-ABC中,E,F(xiàn)中分別為棱SC,AB的中點,若AC=SB=2,EF=
          2
          ,則異面直線AC和SB所成的角為( 。
          分析:取SA的中點D,連結(jié)DE、DF,根據(jù)三角形中位線定理證出DE∥AC且DF∥SB,DE=DF=1,可得∠EDF(或其補角)就是異面直線AC和SB所成的角.再根據(jù)題中數(shù)據(jù),利用余弦定理在△DEF中算出∠EDF的大小,從而得到答案.
          解答:解:取SA的中點D,連結(jié)DE、DF,
          ∵△SAC中,DE是中位線,
          ∴DE∥AC,DE=
          1
          2
          AC=1.
          同理DF∥SB,DF=
          1
          2
          SB=1.
          因此,∠EDF(或其補角)就是異面直線AC和SB所成的角.
          ∵△DEF中,DE=DF=1,EF=
          2
          ,
          ∴DE2+DF2=2=EF2
          可得cos∠EDF=
          DE2+DF2-EF2
          2DE•DF 
          =0,∠EDF=90°.
          即異面直線AC和SB所成的角為90°.
          故選:C
          點評:本題給出三棱錐滿足的條件,求異面直線所成角的大小,著重考查了三角形中位線定理、余弦定理和異面直線的定義及求法等知識,屬于中檔題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為邊長為1的等邊三角形,∠BAC=90°,O為BC中點.
          (Ⅰ)證明:SO⊥平面ABC;
          (Ⅱ)證明:SA⊥BC;
          (Ⅲ)求三棱錐S-ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為等邊三角形,∠BAC=90°,O為BC中點.
          (Ⅰ)證明:SO⊥平面ABC;
          (Ⅱ)求二面角A-SC-B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
          3


          (Ⅰ)求證SA⊥SC;
          (Ⅱ)在平面幾何中,推導三角形內(nèi)切圓的半徑公式r=
          2S
          l
          (其中l(wèi)是三角形的周長,S是三角形的面積),常用如下方法(如右圖):
          ①以內(nèi)切圓的圓心O為頂點,將三角形ABC分割成三個小三角形:△OAB,△OAC,△OB精英家教網(wǎng)C.
          ②設(shè)△ABC三邊長分別為a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB,
          S=
          1
          2
          ar+
          1
          2
          br+
          1
          2
          cr
          =
          1
          2
          lr
          ,則r=
          2S
          l

          類比上述方法,請給出四面體內(nèi)切球半徑的計算公式(不要求說明類比過程),并利用該公式求出三棱錐S-ABC內(nèi)切球的半徑.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在三棱錐S-ABC中,SA=AB=BC=AC=
          2
          SB=
          2
          SC
          ,O為BC中點.
          (1)求證:SO⊥平面ABC
          (2)在線段AB上是否存在一點E,使二面角B-SC-E的平面角的余弦值為
          15
          5
          ?若存在,確定E點位置;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在三棱錐S-ABC中,側(cè)棱SC⊥平面SAB,SA⊥BC,側(cè)面△SAB,△SBC,△SAC的面積分別為1,
          3
          2
          ,3,則此三棱錐的外接球的表面積為(  )

          查看答案和解析>>

          同步練習冊答案