日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù).

          (1)當(dāng)時,求函數(shù)上的最大值;

          (2)令,若在區(qū)間上不單調(diào),求的取值范圍;

          (3)當(dāng)時,函數(shù)的圖象與軸交于兩點,且,又的導(dǎo)函數(shù).若正常數(shù)滿足條件.證明:.

           

          【答案】

          (1)-1;(2);(3)詳見解析.

          【解析】

          試題分析:(1)根據(jù)利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值的方法即可求得.

          (2)首先將代入得,然后求導(dǎo):.

          在區(qū)間上不單調(diào),那么方程在(0,3)上應(yīng)有實數(shù)解,且不是重根即解兩側(cè)的導(dǎo)數(shù)值小于0.

          將方程變形分離變量得:.下面就研究函數(shù),易得函數(shù)上單調(diào)遞增,所以,().結(jié)合圖象知,時,在(0,3)上有實數(shù)解.這些解會不會是重根呢?

          得:,若有重根,則.這說明時,沒有重根. 由此得:.

          (3)時,,所以.有兩個實根,則將兩根代入方程,可得.

          再看看待證不等式:,這里面不僅有,還有,那么是否可以消去一些字母呢?

          兩式相減,得, 變形得:

          , 將此式代入上面不等式即可消去,整理可得:

          ,再變形得:.下面就證這個不等式.這類不等式就很常見了,一般是將看作一個整體,令,又轉(zhuǎn)化為 ,只需證即可.而這利用導(dǎo)數(shù)很易得證.

          試題解析:(1)  

          函數(shù)在[,1]是增函數(shù),在[1,2]是減函數(shù),     3分

          所以.                                      4分

          (2)因為,所以,                   5分

          因為在區(qū)間上不單調(diào),所以在(0,3)上有實數(shù)解,且無重根,

          ,有=,()             6分

          又當(dāng)時,有重根;時,有重根.            7分

          綜上                              8分

          (3)∵,又有兩個實根,

          ,兩式相減,得

          ,                                           10分

          于是

          .                             11分

          要證:,只需證:

          只需證:.(*)                                         12分

          ,∴(*)化為 ,只證即可. 在(0,1)上單調(diào)遞增,,即.∴.  14分

          考點:1、導(dǎo)數(shù)的應(yīng)用;2、不等式的證明.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù),其中    

          (1)      當(dāng)滿足什么條件時,取得極值?

          (2)      已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)

          (1)當(dāng)a=3時,求fx)的零點;

          (2)求函數(shù)yf (x)在區(qū)間[1,2]上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省深圳市寶安區(qū)高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù).

          (1)當(dāng)為何值時,取得最大值,并求出其最大值;

          (2)若,,求的值.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三5月高考三輪模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù),

          (1)當(dāng)時,證明:對,;

          (2)若,且存在單調(diào)遞減區(qū)間,求的取值范圍;

          (3)數(shù)列,若存在常數(shù),,都有,則稱數(shù)列有上界。已知,試判斷數(shù)列是否有上界.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù) ,

             (1)當(dāng)  時,求函數(shù)  的最小值;

             (2)當(dāng)  時,討論函數(shù)  的單調(diào)性;

             (3)是否存在實數(shù),對任意的 ,且,有,恒成立,若存在求出的取值范圍,若不存在,說明理由。

           

          查看答案和解析>>

          同步練習(xí)冊答案