日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知四邊形ABCD內(nèi)接于圓,延長AD,BC相交于點(diǎn)E,點(diǎn)F是BD的延長線上的點(diǎn),且DE平分∠CDF,若AC=3cm,AD=2cm,則DE長為
          2.5
          2.5
          cm.
          分析:證明△ABD∽△AEB,通過相似三角形的對應(yīng)成比例線段,求出AE及DE的值.
          解答:解:∵DE平分∠CDF
          ∴∠FDE=∠CDE
          ∵∠CDE=∠ABE,∠FDE=∠ADB
          ∴∠ADB=∠ABE,
          ∵∠DAB=∠BAE
          ∴△ABD∽△AEB
          AB
          AE
          =
          AD
          AB

          ∵AB=AC=3,AD=2
          ∴AE=
          AB2
          AD
          =
          9
          2

          ∴DE=
          9
          2
          -2=2.5(cm).
          故答案為:2.5
          點(diǎn)評:本題綜合考查了角平分線,相似三角形,圓內(nèi)接四邊形的性質(zhì),屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
          (I)證明:DC⊥平面APC;
          (II)求棱錐A-PBC的高.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (幾何證明選講選做題)如圖,已知四邊形ABCD內(nèi)接于⊙O,且AB為⊙O的直徑,直線MN切
          ⊙O于D,∠MDA=45°,則∠DCB=
          135°
          135°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖:已知四邊形ABCD是正方形,PD⊥平面ABCD,PD=AD,點(diǎn)E,F(xiàn)分別是線段PB,AD的中點(diǎn)
          (1)求證:FE∥平面PCD;
          (2)求異面直線DE與AB所成的角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
          (I)證明:DC⊥平面APC;
          (II)求二面角B-AP-D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四邊形ABCD是菱形,PA⊥平面ABCD,PA=AB=BD=2,AC與BD交于E點(diǎn),F(xiàn)是PD的中點(diǎn).
          (1)求證:PB∥平面AFC;
          (2)求多面體PABCF的體積.

          查看答案和解析>>

          同步練習(xí)冊答案