日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在正四棱柱ABCD-A1B1C1D1中,AA1=AB,點(diǎn)E、M分別為A1B、C1C的中點(diǎn),過點(diǎn)A1、B、M三點(diǎn)的平面A1BMN交C1D1于點(diǎn)N.
          (1)求證:EM∥平面A1B1C1D1;
          (2)求二面角B-A1N-B1的正切值;
          (3)設(shè)截面A1BMN把該正四棱柱截成的兩個(gè)幾何體的體積分別為V1、V2(V1<V2),求V1:V2的值.

          【答案】分析:(1)設(shè)A1B1的中點(diǎn)為F,連接EF、FC1.跟中位線的性質(zhì)可知EFB1B.進(jìn)而根據(jù)C1MB1B判斷出EFMC1.推斷出EMC1F為平行四邊形.進(jìn)而可知EM∥FC1.推斷出EM∥平面A1B1C1D1
          (2)作B1H⊥A1N于H,連接BH.根據(jù)BB1⊥平面A1B1C1D1,可知BH⊥A1N,進(jìn)而推斷出∠BHB1為二面角B-A1N-B1的平面角.根據(jù)EM∥平面A1B1C1D1,EM?平面A1BMN,平面A1BMN∩平面A1B1C1D1=A1N,推斷出EM∥A1N.進(jìn)而可推斷出A1N∥FC1.A1F∥NC1,推知A1FC1N是平行四邊形.AA1=a,在Rt△A1D1N中,求得A1N,進(jìn)而求得sin∠A1ND1,同理求得B1H則在Rt△BB1H中求得答案.
          (3)延長(zhǎng)A1N與B1C1交于P,則P∈平面A1BMN,且P∈平面BB1C1C.首先判斷出幾何體MNC1-BA1B1為棱臺(tái).進(jìn)而求得底面積和高,分別求得各自的體積.
          解答:解:(1)證明:設(shè)A1B1的中點(diǎn)為F,連接EF、FC1
          ∵E為A1B的中點(diǎn),∴EFB1B.
          又C1MB1B,∴EFMC1
          ∴四邊形EMC1F為平行四邊形.
          ∴EM∥FC1.∵EM?平面A1B1C1D1,
          FC1?平面A1B1C1D1,
          ∴EM∥平面A1B1C1D1
          (2)解:作B1H⊥A1N于H,連接BH.
          ∵BB1⊥平面A1B1C1D1,∴BH⊥A1N.
          ∴∠BHB1為二面角B-A1N-B1的平面角.
          ∵EM∥平面A1B1C1D1,EM?平面A1BMN,平面A1BMN∩平面A1B1C1D1=A1N,
          ∴EM∥A1N.
          又∵EM∥FC1,∴A1N∥FC1
          又∵A1F∥NC1,∴四邊形A1FC1N是平行四邊形.∴NC1=A1F.
          設(shè)AA1=a,則A1B1=2a,D1N=a.
          在Rt△A1D1N中,
          A1N==a,
          ∴sin∠A1ND1==
          在Rt△A1B1H中,B1H=A1B1sin∠HA1B1=2a•=a.
          在Rt△BB1H中,
          tan∠BHB1===
          (3)解:延長(zhǎng)A1N與B1C1交于P,則P∈平面A1BMN,且P∈平面BB1C1C.
          又∵平面A1BMN∩平面BB1C1C=BM,
          ∴P∈BM,即直線A1N、B1C1、BM交于一點(diǎn)P.
          又∵平面MNC1∥平面BA1B1,
          ∴幾何體MNC1-BA1B1為棱臺(tái).
          ∵S=•2a•a=a2
          S=•a•a=a2,
          棱臺(tái)MNC1-BA1B1的高為B1C1=2a,
          V1=•2a•(a2++a2)=a3,∴V2=2a•2a•a-a3=a3
          =
          點(diǎn)評(píng):本題主要考查了直線與平面平行的判定,棱臺(tái)的體積計(jì)算等.考查了學(xué)生的綜合素質(zhì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在正四棱柱ABCD-A1B1C1D1中,已知AA1=4,AB=2,E是棱CC1上的一個(gè)動(dòng)點(diǎn).
          (Ⅰ)求證:BE∥平面AA1D1D;
          (Ⅱ)當(dāng)CE=1時(shí),求二面角B-ED-C的大。
          (Ⅲ)當(dāng)CE等于何值時(shí),A1C⊥平面BDE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在正四棱柱ABCD-A′B′C′D′中(底面是正方形的直棱柱),側(cè)棱AA′=
          3
          ,AB=
          2
          ,則二面角A′-BD-A的大小為( 。
          A、30°B、45°
          C、60°D、90°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•青島一模)如圖,在正四棱柱ABCD-A1B1C1D1中,AB=a,AA1=
          2
          a
          ,E為CC1的中點(diǎn),AC∩BD=O.
          (Ⅰ) 證明:OE∥平面ABC1;
          (Ⅱ)證明:A1C⊥平面BDE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在正四棱柱ABCD-A1B1C1D1中,AA1=A(x0,y0)AB=2,點(diǎn)E、M分別為A1B、C1C的中點(diǎn).
          (Ⅰ)求證:EM∥平面A1B1C1D1;
          (Ⅱ)求幾何體B-CME的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•宜昌模擬)如圖,在正四棱柱ABCD-A1B1C1D1 中,AB=BC=1,AA1=2.過頂點(diǎn)D1在空間作直線l,使l與直線AC和BC1所成的角都等于60°,這樣的直線l最多可作( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案