日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=(t∈R)在[1,2]上的最小值為,P1(x1,y1),P2(x2,y2)是函數(shù)f(x)=圖象上不同兩點(diǎn),且線段P1P2的中點(diǎn)P的橫坐標(biāo)為.

          (1)求t的值;

          (2)求證:點(diǎn)P的縱坐標(biāo)是定值;

          (3)若數(shù)列{an}的通項(xiàng)公式為an=f()(m∈N*,n=1,2,…,m),求數(shù)列{an}的前m項(xiàng)和Sm.

          (1)解:當(dāng)t>0時(shí),f(x)在[1,2]上單調(diào)遞減,又f(x)的最小值為,∴f(2)=,得t=1.

          當(dāng)t<0時(shí),f(x)在[1,2]上單調(diào)遞增,又f(x)的最小值為,∴f(1)=,得t=2(舍去);

          當(dāng)t=0時(shí),f(x)=(舍去),∴t=1,f(x)=.

          (2)證明:∵xP=,∴x1+x2=1.

          而y1+y2=+==

          ==.∴y1+y2=,即P點(diǎn)的縱坐標(biāo)為定值.

          (3)解:由(2)可知,f(x)+f(1-x)=,∴f()+f(1)=(1≤n≤m-1),即f()+f()=,

          ∴an+am-n=.而am=f(1)=,

          由Sm=a1+a2+a3+…+am-1+am,①得Sm=am-1+am-2+am-3+…+a1+am,②

          由①+②,得2Sm=(m-1)×+2am=+2×=.∴Sm=(3m-1)(m∈N*).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3x+5,(x≤0)
          x+5,(0<x≤1)
          -2x+8,(x>1)
          ,
          求(1)f(
          1
          π
          ),f[f(-1)]
          的值;
          (2)若f(a)>2,則a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=
          (1-3a)x+10ax≤7
          ax-7x>7.
          是定義域上的遞減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
          A、(
          1
          3
          ,1)
          B、(
          1
          3
          ,
          1
          2
          ]
          C、(
          1
          3
          ,
          6
          11
          ]
          D、[
          6
          11
          ,1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          |x-1|-a
          1-x2
          是奇函數(shù).則實(shí)數(shù)a的值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          2x-2-x2x+2-x

          (1)求f(x)的定義域與值域;
          (2)判斷f(x)的奇偶性并證明;
          (3)研究f(x)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          x-1x+a
          +ln(x+1)
          ,其中實(shí)數(shù)a≠1.
          (1)若a=2,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
          (2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案