已知函數(shù);
(1)若在
上單調(diào)遞增,在
上單調(diào)遞減,在
上單調(diào)遞增,求實(shí)數(shù)
的值;
(2)當(dāng)時(shí),求證:當(dāng)
時(shí),
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在x=
與x =l時(shí)都取得極值
(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間
(2)若對(duì)x∈(-1,2),不等式f(x)<c2恒成立,求c的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)設(shè),試比較
與
的大小;
(2)是否存在常數(shù),使得
對(duì)任意大于
的自然數(shù)
都成立?若存在,試求出
的值并證明你的結(jié)論;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
.(其中
為自然對(duì)數(shù)的底數(shù)).
(1)設(shè)曲線在
處的切線與直線
垂直,求
的值;
(2)若對(duì)于任意實(shí)數(shù)≥0,
恒成立,試確定實(shí)數(shù)
的取值范圍;
(3)當(dāng)時(shí),是否存在實(shí)數(shù)
,使曲線C:
在點(diǎn)
處的切線與
軸垂直?若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若p=2,求曲線處的切線方程;
(2)若函數(shù)在其定義域內(nèi)是增函數(shù),求正實(shí)數(shù)p的取值范圍;
(3)設(shè)函數(shù),若在[1,e]上至少存在一點(diǎn)
,使得
成立,求實(shí)數(shù)p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)。
(1)求函數(shù)的最小值;
(2)設(shè),討論函數(shù)
的單調(diào)性;
(3)斜率為的直線與曲線
交于
,
兩點(diǎn),求證:
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=(1+x)2-2ln (1+x).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=x2+x+a在[0,2]上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)若x=1時(shí)取得極值,求實(shí)數(shù)
的值;
(2)當(dāng)時(shí),求
在
上的最小值;
(3)若對(duì)任意,直線
都不是曲線
的切線,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的圖像在點(diǎn)
處的切線與直線
平行.
(1)求a,b滿足的關(guān)系式;
(2)若上恒成立,求a的取值范圍;
(3)證明:(
)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com