日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          過圓x2+y2=4外一點P(2,1)引圓的切線,則切線的方程為
          x=2或3x+4y-10=0
          x=2或3x+4y-10=0
          分析:當切線方程的斜率不存在時,顯然x=2滿足題意,當切線方程的斜率存在時,設斜率為k,利用點到直線的距離公式表示出圓心到切線的距離d,根據d=r列出關于k的方程,解之即可求出所求.
          解答:解:由圓x2+y2=4,得到圓心坐標為(0,0),半徑r=2,
          當過P的切線方程斜率不存在時,顯然x=2為圓的切線;
          當過P的切線方程斜率存在時,
          設斜率為k,P(2,1),
          ∴切線方程為y-1=k(x-2),即kx-y-2k+1=0,
          ∵圓心到切線的距離d=
          |1-2k|
          k2+1
          =r=2,
          解得:k=-
          3
          4
          ,
          此時切線方程為3x+4y-10=0,
          綜上,切線方程為x=2或3x+4y-10=0.
          故答案為:x=2或3x+4y-10=0
          點評:本題主要考查了直線圓的位置關系,以及切線的求解方法,同時考查了運算求解的能力,屬于基礎題.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          12、過圓x2+y2=4外一點P(2,4)作圓的切線,切點為A、B,則△APB的外接圓方程為(x-1)2+(y-2)2=
          5

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          過圓x2+y2=4外一點P(4,2)作圓的兩條切線,切點分別為A,B,則△ABP的外接圓方程是( 。
          A、(x-4)2+(y-2)2=1B、x2+(y-2)2=4C、(x+2)2+(y+1)2=5D、(x-2)2+(y-1)2=5

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          過圓x2+y2=4外的一點A(4,0)作圓的割線,則割線被圓截得的弦的中點的軌跡方程為
          (x-2)2+y2=4(已知圓內部分)
          (x-2)2+y2=4(已知圓內部分)

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          過圓x2+y2=4外一點P(-4,-2)作圓的兩條切線,切點為A、B,則△ABP的外接圓的方程為(    )

          A.(x-4)2+(y-2)2=1                            B.(x+2)2+(y+1)2=5

          C.x2+(y-2)2=4                               D.(x-2)2+(y-1)2=5

          查看答案和解析>>

          同步練習冊答案