日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1.  項數(shù)為n的數(shù)列a1,a2,a3,…,an的前k項和為 (k=1,2,3,…,n),定義為該項數(shù)列的“凱森和”,如果項系數(shù)為99項的數(shù)列a1,a2,a3,…,a99的“凱森和”為1 000,那么項數(shù)為100的數(shù)列100,a1,a2,a3,…,a99的“凱森和”為(  )

          A.991          B.1 001        C.1 090        D.1 100

           

          【答案】

          C

          【解析】.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          15、給定項數(shù)為m (m∈N*,m≥3)的數(shù)列{an},其中ai∈{0,1}(i=1,2,3,…,m),這樣的數(shù)列叫”0-1數(shù)列”.若存在一個正整數(shù)k (2≤k≤m-1),使得數(shù)列{an}中某連續(xù)k項與該數(shù)列中另一個連續(xù)k項恰好按次序?qū)?yīng)相等,則稱數(shù)列{an}是“k階可重復(fù)數(shù)列”.例如數(shù)列{an}:0,1,1,0,1,1,0,因為a1,a2,a3,a4與a4,a5,a6,a7按次序?qū)?yīng)相等,所以數(shù)列{an}是“4階可重復(fù)數(shù)列”.
          (1)已知數(shù)列{bn}:0,0,0,1,1,0,0,1,1,0,則該數(shù)列
          “5階可重復(fù)數(shù)列”(填“是”或“不是”);
          (2)要使項數(shù)為m的所有”0-1數(shù)列”都為“2階可重復(fù)數(shù)列”,則m的最小值是
          6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•鹽城一模)如果有窮數(shù)列a1,a2,a3,…,an(n為正整數(shù))滿足條件a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我們稱其為“對稱數(shù)列”.例如,由組合數(shù)組成的數(shù)列
          C
          0
          m
          , 
          C
          1
          m
          , …, 
          C
          m
          m
          就是“對稱數(shù)列”.
          (1)設(shè){bn}是項數(shù)為7的“對稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11.依次寫出{bn}的每一項;
          (2)設(shè){cn}是項數(shù)為2k-1(正整數(shù)k>1)的“對稱數(shù)列”,其中ck,ck+1,…,c2k-1是首項為50,公差為-4的等差數(shù)列.記{cn}各項的和為S2k-1.當(dāng)k為何值時,S2k-1取得最大值?并求出S2k-1的最大值;
          (3)對于確定的正整數(shù)m>1,寫出所有項數(shù)不超過2m的“對稱數(shù)列”,使得1,2,22,…,2m-1依次是該數(shù)列中連續(xù)的項;當(dāng)m>1500時,求其中一個“對稱數(shù)列”前2008項的和S2008

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•上海)對于項數(shù)為m的有窮數(shù)列{an},記bk=max{a1,a2,…,ak}(k=1,2,…,m),即bk為a1,a2,…,ak中的最大值,并稱數(shù)列{bn}是{an}的控制數(shù)列,如1,3,2,5,5的控制數(shù)列是1,3,3,5,5.
          (1)若各項均為正整數(shù)的數(shù)列{an}的控制數(shù)列為2,3,4,5,5,寫出所有的{an}.
          (2)設(shè){bn}是{an}的控制數(shù)列,滿足ak+bm-k+1=C(C為常數(shù),k=1,2,…,m),求證:bk=ak(k=1,2,…,m).
          (3)設(shè)m=100,常數(shù)a∈(
          1
          2
          ,1)
          ,若an=an2-(-1)
          n(n+1)
          2
          n
          ,{bn}是{an}的控制數(shù)列,求(b1-a1)+(b2-a2)+…+(b100-a100).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          項數(shù)為n的數(shù)列a1,a2,a3,…,an的前k項和為Sk(k=1,2,3,…,n),定義
          S1+S2+…+Sn
          n
          為該項數(shù)列的“凱森和”,如果項數(shù)為99項的數(shù)列a1,a2,a3,…,a99的“凱森和”為1000,那么項數(shù)為100的數(shù)列100,a1,a2,a3,…,a99的“凱森和”為( 。

          查看答案和解析>>

          同步練習(xí)冊答案