日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (文)已知是等差數(shù)列,,其前10項(xiàng)和,則其公差
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知等差數(shù)列的前四項(xiàng)和為10,且成等比數(shù)列
          (1)求通項(xiàng)公式,
          (2)設(shè),求數(shù)列的前項(xiàng)和。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本題滿分16分,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分)
          設(shè)等比數(shù)列的前項(xiàng)和為,已知.
          (1)求數(shù)列的通項(xiàng)公式;(2)在之間插入個(gè)1,構(gòu)成如下的新數(shù)列:,求這個(gè)數(shù)列的前項(xiàng)的和;、(3)在之間插入個(gè)數(shù),使這個(gè)數(shù)組成公差為的等差數(shù)列(如:在之間插入1個(gè)數(shù)構(gòu)成第一個(gè)等差數(shù)列,其公差為;在之間插入2個(gè)數(shù)構(gòu)成第二個(gè)等差數(shù)列,其公差為,…以此類(lèi)推),設(shè)第個(gè)等差數(shù)列的和是. 是否存在一個(gè)關(guān)于的多項(xiàng)式,使得對(duì)任意恒成立?若存在,求出這個(gè)多項(xiàng)式;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知等差數(shù)列的公差, 若, , 則該數(shù)列的前n項(xiàng)和的最大值為  (        )                                                              
          A.50B.45C.40D.35

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分10分)
          已知等差數(shù)列中,
          (1) 求數(shù)列的通項(xiàng)公式;  (2) 求數(shù)列的前20項(xiàng)的和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          在等差數(shù)列中,若,則該數(shù)列的前2011項(xiàng)的和為
          A.2010B.2011C.4020D.4022

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知等差數(shù)列中,,,則的值是( )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知數(shù)列的前項(xiàng)和為,,且當(dāng)時(shí)的等差中項(xiàng),則數(shù)列的通項(xiàng)      

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分14分)
          已知等差數(shù)列{an}的首項(xiàng)為a,公差為b,等比數(shù)列{bn}的首項(xiàng)為b,公比為a,存在m,n∈N+使得am+1=bn成立,其中a,b均為正整數(shù),且a1<b1<a2<b2<a3 ;
          (1)求數(shù)列{an},{bn}的通項(xiàng)公式;
          (2)設(shè)函數(shù)f(x)=bmx+bm-1x2+…+b1xm,f′(x)是函數(shù)f(x)的導(dǎo)函數(shù);令Sm=f′(1),求Sm(用含n的代數(shù)式表示)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案