日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=(x-1)2,g(x)=k(x-1),函數(shù)f(x)-g(x)其中一個零點為5,數(shù)列{an}滿足,且(an+1-an)g(an)+f(an)=0.
          (1)求數(shù)列{an}通項公式;
          (2)求S{an}的最小值(用含有n的代數(shù)式表示);
          (3)設(shè)bn=3f(an)-g(an+1),試探究數(shù)列{bn}是否存在最大項和最小項?若存在求出最大項和最小項,若不存在,說明理由.
          【答案】分析:首先確定k的值,利用(an+1-an)g(an)+f(an)=0.推出4an+1=3an+1
          (1)構(gòu)造數(shù)列{an-1},然后求出數(shù)列{an}通項公式;或者構(gòu)造數(shù)列{an-an-1},再解出an-an-1,然后再求出數(shù)列{an}通項公式;
          (2)通過數(shù)列an,求出前n項和;然后求S{an}的最小值(用含有n的代數(shù)式表示);
          (3)表示出bn=3f(an)-g(an+1),化簡為n的函數(shù),利用換元法,確定其最值,求出最大值及最小值.
          解答:解:(1)函數(shù)f(x)-g(x)有一個零點為5,即方程(x-1)2-k(x-1)=0,有一個根為5,
          將x=5代入方程得16-4k=0,
          ∴k=4,
          ∴a1=2(2分)
          由(an+1-an)g(an)+f(an)=0得4(an+1-an)(an-1)+(an-1)2=0(an-1)(4an+1-4an+an-1)=0
          ∴an-1=0或4an+1-4an+an-1=0
          由(1)知a1=2,
          ∴an-1=0不合舍去
          由4an+1-4an+an-1=0得4an+1=3an+1(4分)
          方法1:由4an+1=3an+1得
          ∴數(shù)列{an-1}是首項為a1-1=1,公比為的等比數(shù)列
          ,

          〔方法2:由4an+1=3an+1①得當(dāng)n≥2時4an=3an-1+1②
          ①-②得4(an+1-an)=3(an-an-1
          (n≥2)即數(shù)列{an-an-1}是首項為a2-a1,公比為的等比數(shù)列
          ,∴
          由①得代入③整理得(6分)
          (2)由(1)知

          =(8分)
          ∵對?n∈N*,有,

          ,即
          即所求S{an}的最小值為1+n.(10分)
          (3)由bn=3f(an)-g(an+1)得bn=3(an-1)2-4(an+1-1)
          =(12分)
          ,則0<u≤1,bn=3(u2-u)=
          ∵函數(shù)上為增函數(shù),在上為減函數(shù)(14分)
          當(dāng)n=1時u=1,
          當(dāng)n=2時
          當(dāng)n=3時,
          當(dāng)n=4時,
          ,且(16分)
          ∴當(dāng)n=3時,bn有最小值,即數(shù)列{bn}有最小項,最小項為
          故當(dāng)n=1即u=1時,bn有最大值,即數(shù)列{bn}有最大項,
          最大項為b1=3(1-1)=0.(18分)
          點評:本題考查函數(shù)的零點,數(shù)列的求和,數(shù)列遞推式,考查分析問題解決問題的能力,計算能力,是中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
          (1)求函數(shù)f(x)的最小正周期;
          (2)若函數(shù)y=f(2x+
          π
          4
          )
          的圖象關(guān)于直線x=
          π
          6
          對稱,求φ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
          (1)求x<0,時f(x)的表達式;
          (2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=aInx-ax,(a∈R)
          (1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
          1
          x

          (2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
          m
          2
          ]
          ,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
          1
          f(n)
          }
          的前n項和為Sn,則S2010的值為( 。
          A、
          2011
          2012
          B、
          2010
          2011
          C、
          2009
          2010
          D、
          2008
          2009

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
           

          查看答案和解析>>

          同步練習(xí)冊答案