日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C1的方程為,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn),  
          (Ⅰ)求雙曲線C2的方程;
          (Ⅱ)若直線l:y=kx+與橢圓C1及雙曲線C2都恒有兩個(gè)不同的交點(diǎn),且l與C2的兩個(gè)交點(diǎn)A和B滿足(其中O為原點(diǎn)),求k的取值范圍。

          解:(Ⅰ)設(shè)雙曲線C2的方程為
          ,
          再由,得
          故C2的方程為;
          (Ⅱ)將代入,
          由直線l與橢圓C1恒有兩個(gè)不同的交點(diǎn)得,即,  ①
          代入,
          由直線l與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A,B,
          ,
          ,
          設(shè)
          ,
          ,
            


          于是,
          解此不等式得,      ③
          由①、②、③得,
          故k的取值范圍為。

          練習(xí)冊(cè)系列答案
        2. 1加1閱讀好卷系列答案
        3. 專項(xiàng)復(fù)習(xí)訓(xùn)練系列答案
        4. 初中語(yǔ)文教與學(xué)閱讀系列答案
        5. 閱讀快車系列答案
        6. 完形填空與閱讀理解周秘計(jì)劃系列答案
        7. 英語(yǔ)閱讀理解150篇系列答案
        8. 奔騰英語(yǔ)系列答案
        9. 標(biāo)準(zhǔn)閱讀系列答案
        10. 53English系列答案
        11. 考綱強(qiáng)化閱讀系列答案
        12. 年級(jí) 高中課程 年級(jí) 初中課程
          高一 高一免費(fèi)課程推薦! 初一 初一免費(fèi)課程推薦!
          高二 高二免費(fèi)課程推薦! 初二 初二免費(fèi)課程推薦!
          高三 高三免費(fèi)課程推薦! 初三 初三免費(fèi)課程推薦!
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C1的方程為
          x2
          4
          +y2=1,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn).
          (Ⅰ)求雙曲線C2的方程;
          (Ⅱ)若直線l:y=kx+
          2
          與橢圓C1及雙曲線C2都恒有兩個(gè)不同的交點(diǎn),且l與C2的兩個(gè)交點(diǎn)A和B滿足
          OA
          OB
          <6(其中O為原點(diǎn)),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C1的方程為
          x2
          4
          +y2=1,雙曲線C2的左、右焦點(diǎn)分別是C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn).
          (1)求雙曲線C2的方程;
          (2)若直線l:y=kx+
          2
          與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,且
          OA
          OB
          >2(其中O為原點(diǎn)),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C1的方程為
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,離心率為
          3
          2
          ,兩個(gè)焦點(diǎn)分別為F1和F2,橢圓C1上一點(diǎn)到F1和F2的距離之和為12,橢圓C2的方程為
          x2
          (a-2)2
          +
          y2
          b2-1
          =1
          ,圓C3:x2+y2+2kx-4y-21=0(k∈R)的圓心為點(diǎn)Ak
          (I)求橢圓C1的方程;
          (II)求△AkF1F2的面積;
          (III)若點(diǎn)P為橢圓C2上的動(dòng)點(diǎn),點(diǎn)M為過點(diǎn)P且垂直于x軸的直線上的點(diǎn),
          |OP|
          |OM|
          =e
          (e為橢圓C2的離心率),求點(diǎn)M的軌跡.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C1的方程為
          x24
          +y2=1
          ,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn).
          (1)求雙曲線C2的方程;
          (2)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓C1交于不同的兩點(diǎn)A、B,且滿足|OA|2+|OB|2>|AB|2,(其中O為原點(diǎn)),求l斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C1的方程為
          x2
          4
          +y2=1
          ,雙曲線C2的左、右焦點(diǎn)分別是C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn).
          (1)求雙曲線C2的方程;
          (2)若直線l:y=kx+
          2
          與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,且
          OA
          OB
          >2
          (其中O為原點(diǎn)),求k的范圍.
          (3)試根據(jù)軌跡C2和直線l,設(shè)計(jì)一個(gè)與x軸上某點(diǎn)有關(guān)的三角形形狀問題,并予以解答(本題將根據(jù)所設(shè)計(jì)的問題思維層次評(píng)分).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案