日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (12分)已知橢圓C:其左、右焦點分別為F1、F2,點P是坐標(biāo)平面內(nèi)一點,且|OP|=(O為坐標(biāo)原點)。

             (1)求橢圓C的方程;

             (2)過點l交橢圓于A、B兩點,在y軸上是否存在定點M,使以AB為直徑的圓恒過這個點:若存在,求出M的坐標(biāo);若不存在,說明理由。

           

          【答案】

          (1)設(shè)

          因此所求橢圓的方程為:  

             (2)動直線l的方程為:,

            

          由假設(shè)得對于任意的恒成立,

          因此,在y軸上存在定點M,使得以AB為直徑的圓恒過這個點,點M的坐標(biāo)為(0,1)。

          【解析】

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:陜西省鐵一中2012屆高三第二次模擬考試數(shù)學(xué)理科試題 題型:044

          如圖,已知橢圓C:的左、右焦點為F1、F2,其上頂點為A.已知△F1AF2是邊長為2的正三角形.

          (1)求橢圓C的方程;

          (2)過點Q(-4,0)任作一直線l交橢圓C于M,N兩

          點,記=λ·.若在線段MN上取一點R,使得=-λ·,試判斷當(dāng)直線l運動時,點R是否在某一定直線上運動?若在,請求出該定直線的方程,若不在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省宿州市高三第三次模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知橢圓C:其左、右焦點分別為F1、F2,點P是坐標(biāo)平面內(nèi)一點,且|OP|=(O為坐標(biāo)原點)。

          (1)求橢圓C的方程;

          (2)過點l交橢圓于A、B兩點,在y軸上是否存在定點M,使以AB為直徑的圓恒過這個點:若存在,求出M的坐標(biāo);若不存在,說明理由。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:安徽省蚌埠市2010年高三第三次質(zhì)檢數(shù)學(xué)試題(理科) 題型:填空題

          已知橢圓C:其左、右焦點分別為F1、F2,點P是坐標(biāo)平面內(nèi)一點,且|OP|=(O為坐標(biāo)原點)。

             (1)求橢圓C的方程

             (2)過點l交橢圓于A、B兩點,在y軸上是否存在定點M,使以AB為直徑的圓恒過這個點:若存在,求出M的坐標(biāo);若不存在,說明理由。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:安徽省蚌埠市2010屆高三第三次質(zhì)檢(理) 題型:解答題

           

                  已知橢圓C:其左、右焦點分別為F1、F2,點P是坐標(biāo)平面內(nèi)一點,且|OP|=(O為坐標(biāo)原點)。

             (1)求橢圓C的方程;

             (2)過點l交橢圓于A、B兩點,在y軸上是否存在定點M,使以AB為直徑的圓恒過這個點:若存在,求出M的坐標(biāo);若不存在,說明理由。

           

           

           

           

           

           

           

           

           

           

          查看答案和解析>>

          同步練習(xí)冊答案