日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ax2-bx-1,其中a∈(0,2],b∈(0,2],a,b∈Z,則此函數(shù)在區(qū)間[1,+∞)上為增函數(shù)的概率為
           
          分析:本題是一個等可能事件的概率,試驗發(fā)生包含的事件是從兩個區(qū)間中分別取一個數(shù)字,共有4種結果,滿足條件的事件是此函數(shù)在一個區(qū)間上為增函數(shù),要使的二次函數(shù)是增函數(shù),則
          b
          2a
          ≤1
          ,即b≤2a,列舉出所有事件,得到結果.
          解答:解:由題意知本題是一個等可能事件的概率,由于a∈(0,2],b∈(0,2],a,b∈Z,
          所以a可取的值為1,2兩個,b可取的值也是1,2兩個
          試驗發(fā)生包含的基本事件數(shù),共有4個,
          滿足條件的事件是此函數(shù)在區(qū)間[1,+∞)上為增函數(shù),
          要使的二次函數(shù)是增函數(shù),
          b
          2a
          ≤1
          ,即b≤2a,
          當b=2,a可取2,當b=1時,a可取1與2,故滿足條件的事件是此函數(shù)在區(qū)間[1,+∞)上為增函數(shù)的數(shù)對有三組
          ∴根據(jù)等可能事件的概率P=
          3
          4
          ,
          故答案為:
          3
          4
          點評:本題考查等可能事件的概率,考查二次函數(shù)的單調性,是一個綜合題目,概率問題往往這樣,表面上考查概率,實際上主要是考查其他的知識點.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當a∈[-2,
          1
          4
          )
          時,求f(x)的最大值;
          (2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調性;
          (2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
           

          查看答案和解析>>

          同步練習冊答案