已知直三棱柱的三視圖如圖所示,
是
的中點.
(Ⅰ)求證:∥平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問線段上是否存在點
,使
與
成
角?若存在,確定
點位置,若不存在,說明理由.
(Ⅰ)根據(jù)三視圖知:三棱柱是直三棱柱,
,
連結(jié)
,交
于點
,連結(jié)
.由
是直三棱柱,得四邊形
為矩形,
為
的中點,又
為
中點,所以
為
中位線,所以
∥
所以
∥平面
(Ⅱ)(Ⅲ)
為線段
中點
【解析】
試題分析:(Ⅰ)證明:根據(jù)三視圖知:三棱柱是直三棱柱,
,
連結(jié)
,交
于點
,連結(jié)
.由
是直三棱柱,
得四邊形為矩形,
為
的中點.
又為
中點,所以
為
中位線,所以
∥
,
2分
因為 平面
,
平面
,
所以 ∥平面
.
4分
(Ⅱ)解:由是直三棱柱,且
,故
兩兩垂直.
如圖建立空間直角坐標(biāo)系.
5分
,則
.
所以 ,
設(shè)平面的法向量為
,則有
所以 取
,得
.
6分
易知平面的法向量為
.
由二面角是銳角,得
.
所以二面角的余弦值為
.
8分
(Ⅲ)解:假設(shè)存在滿足條件的點.
因為在線段
上,
,
,故可設(shè)
,其中
.
所以 ,
.
9分
因為與
成
角
10分
所以,解得
,舍去
.
所以當(dāng)點為線段
中點時,
與
成
角.
12分
考點:空間線面平行的判定及二面角線線角的求解
點評:采用空間向量法求解立體幾何問題首先要找到直線的方向向量和平面的法向量,直線的方向向量和平面的法向量垂直時,直線與平面平行;求二面角可先求出法向量的夾角,求兩條異面直線所成角可首先求兩直線的方向向量所成角
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年四川成都石室中學(xué)高三模擬考試一理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知直三棱柱的三視圖如圖所示,且
是
的中點.
(Ⅰ)求證:∥平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問線段上是否存在點
,使
與
成
角?若存在,確定
點位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省八校高三第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知直三棱柱的三視圖如圖所示,且
是
的中點.
(Ⅰ)求證:∥平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問線段上是否存在點
,使
與
成
角?若存在,確定
點位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市普陀區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com