【題目】已知,函數(shù)
有兩個(gè)零點(diǎn)
.
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)證明:.
【答案】(Ⅰ);(Ⅱ)見(jiàn)解析
【解析】
(Ⅰ)利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性及函數(shù)
的最大值
,即可求解實(shí)數(shù)
的取值范圍;
(Ⅱ) 構(gòu)造新函數(shù),利用導(dǎo)數(shù)得到函數(shù)
的單調(diào)性,證得
,進(jìn)而利用基本不等式,即可作出證明.
(Ⅰ)由題意,函數(shù),可得
,
①時(shí),
,
在
上遞增,不合題意,舍去,
②當(dāng)時(shí),令
,解得
;令
,解得
;
故在
單調(diào)遞增,在
上單調(diào)遞減,
由函數(shù)有兩個(gè)零點(diǎn)
,
其必要條件為:且
,即
,
此時(shí),,且
,
令,(
),
則,
在
上單調(diào)遞增,
所以,,即
,
故的取值范圍是
.
(Ⅱ)令,
令,則
,可得
在
單調(diào)遞增,在
單調(diào)遞減,
由(Ⅰ)知,故有
,
令,(
),
,(
),
,
所以,在
單調(diào)遞減,故
,
故當(dāng)時(shí),
,
所以,而
,故
,
又在
單調(diào)遞減,
,
所以,即
,
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知p:2x2﹣3x+1≤0,q:x2﹣(2a+1)x+a(a+1)≤0
(1)若a=,且p∧q為真,求實(shí)數(shù)x的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
用反證法證明命題“設(shè)a,b,c為實(shí)數(shù),且
,
,則
,
,
”時(shí),要給出的假設(shè)是:a,b,c都不是正數(shù);
若函數(shù)
在
處取得極大值,則
或
;
用數(shù)學(xué)歸納法證明
,在驗(yàn)證
成立時(shí),不等式的左邊是
;
數(shù)列
的前n項(xiàng)和
,則
是數(shù)列
為等比數(shù)列的充要條件;
上述命題中,所有正確命題的序號(hào)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為坐標(biāo)原點(diǎn),⊙
上有兩點(diǎn)
,滿足關(guān)于直線
軸對(duì)稱.
(1)求的值;
(2)若,求線段
的長(zhǎng)及其中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《數(shù)書九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隅,開(kāi)平方得積.”若把以上這段文字寫成公式,即.已知
滿足
.且
,則用以上給出的公式可求得
的面積為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有形狀和大小完全相同的小球裝在三個(gè)盒子里,每個(gè)盒子裝個(gè).其中第一個(gè)盒子中有
個(gè)球標(biāo)有字母
,有
個(gè)球標(biāo)有字母
;第二個(gè)盒子中有
個(gè)紅球和
個(gè)白球;第三個(gè)盒子中有
個(gè)紅球和
個(gè)白球.現(xiàn)按如下規(guī)則進(jìn)行試驗(yàn):先在第一個(gè)盒子中隨機(jī)抽取一個(gè)球,若取得字母
的球,則在第二個(gè)盒子中任取一球;若取得字母
的球,則在第三個(gè)盒子中任取一球.
(I)若第二次取出的是紅球,則稱試驗(yàn)成功,求試驗(yàn)成功的概率;
(II)若第二次在第二個(gè)盒子中取出紅球,則得獎(jiǎng)金元,取出白球則得獎(jiǎng)金
元.若第二次在第三個(gè)盒子中取出紅球,則得獎(jiǎng)金
元,取出白球則得獎(jiǎng)金
元.求某人在一次試驗(yàn)中,所得獎(jiǎng)金的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)求的單調(diào)區(qū)間;
(2)若(其中
為自然對(duì)數(shù)的底數(shù)),且
恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次抽獎(jiǎng)活動(dòng)中,有,
,
,
,
,
共6人獲得抽獎(jiǎng)機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:若獲一等獎(jiǎng)后不再參加抽獎(jiǎng),獲得二等獎(jiǎng)的仍參加三等獎(jiǎng)抽獎(jiǎng).現(xiàn)在主辦方先從6人中隨機(jī)抽取2人均獲一等獎(jiǎng),再?gòu)挠嘞碌?/span>4人中隨機(jī)抽取1人獲二等獎(jiǎng),最后還從這4人中隨機(jī)抽取1人獲三等獎(jiǎng).
(1)求能獲一等獎(jiǎng)的概率;
(2)若,
已獲一等獎(jiǎng),求
能獲獎(jiǎng)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com