【題目】已知函數(shù).
()求
的值.
()求函數(shù)
的最小正周期和單調遞增區(qū)間.
【答案】()1;(
)
,
,
.
【解析】試題分析:(1)根據函數(shù)的解析式,計算
的值即可;
(2)化函數(shù)為正弦型函數(shù),即可求出它的最小正周期與單調遞增區(qū)間.
試題解析:()∵函數(shù)
,
∴.
()由(
)知
,
∴函數(shù)的最小正周期
,
令,
,
得,
,
∴函數(shù)的單調遞增區(qū)間是
,
.
點睛:三角函數(shù)式的化簡要遵循“三看”原則:(1)一看“角”,這是最重要的一環(huán),通過看角之間的區(qū)別和聯(lián)系,把角進行合理的拆分,從而正確使用公式;(2)而看“函數(shù)名稱”看函數(shù)名稱之間的差異,從而確定使用公式,常見的有“切化弦”;(3)三看“結構特征”,分析結構特征,可以幫助我們找到變形的方向,如“遇到分式通分”等.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,定義在[-1,+∞)上的函數(shù)的圖象由一條線段及拋物線的一部分組成.
(1)求的值及
的解析式;
(2)若f(x)=,求實數(shù)x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經過點
,且兩焦點與短軸的一個端點的連線構成等腰直角三角形.
()求橢圓的方程.
()過定點
的動直線
,交橢圓
于
、
兩點,試問:在坐標平面上是否存在一個定點
,使得以
為直徑的圓恒過點
.若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若f(x)是定義在(﹣∞,+∞)上的偶函數(shù),x1 , x2∈[0,+∞)(x1≠x2),有 ,則( )
A.f(3)<f(1)<f(﹣2)
B.f(1)<f(﹣1)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(﹣2)<f(1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別為a,b,c.已知a+c=3 ,b=3.
(1)求cosB的最小值;
(2)若 =3,求A的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,
平面
,
分別為
的中點,且
.
(1)求證:平面平面
;
(2)求證:平面平面
;
(3)求三棱錐與四棱錐
的體積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直角梯形,如圖(1)所示,
,
,
,
,連接
,將
沿
折起,使得平面
平面
,得到幾何體
,如圖(2)所示.
(1)求證: 平面
;
(2)若,求二面角
的大小.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com