日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 數(shù)列{an}的前n項和為Sn,若對于任意的正整數(shù)n都有Sn=2an-3n.
          (1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項公式;
          (2)求數(shù)列{nan}的前n項和.
          分析:(1)通過遞推關(guān)系式求出an與an+1的關(guān)系,推出{an+3}即數(shù)列{bn}是等比數(shù)列,求出數(shù)列{bn}的通項公式即可求出{an}的通項公式;
          (2)寫出數(shù)列{nan}的通項公式,然后寫出前n項和的表達(dá)式通過錯位相減法求解即可.
          解答:解:(1)∵Sn=2an-3n,對于任意的正整數(shù)都成立,
          ∴Sn+1=2an+1-3n-3,
          兩式相減,得a n+1=2an+1-2an-3,即an+1=2an+3,
          ∴an+1+3=2(an+3),
          所以數(shù)列{bn}是以2為公比的等比數(shù)列,
          由已知條件得:S1=2a1-3,a1=3.
          ∴首項b1=a1+3=6,公比q=2,
          ∴an=6•2n-1-3=3•2n-3.
          (2)∵nan=3×n•2n-3n
          ∴Sn=3(1•2+2•22+3•23+…+n•2n)-3(1+2+3+…+n),
          2Sn=3(1•22+2•23+3•24+…+n•2n+1)-6(1+2+3+…+n),
          ∴-Sn=3(2+22+23+…+2n-n•2n+1)+3(1+2+3+…+n)
          =
          2(2n-1)
          2-1
          -6n•2n+
          3n(n+1)
          2

          ∴Sn=(6n-6)•2n+6-
          3n(n+1)
          2
          點(diǎn)評:本題考查數(shù)列遞推式,等比關(guān)系的確定,數(shù)列的求和的方法---錯位相減法的應(yīng)用,高考參考題型,考查計算能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項的和,Tn表示數(shù)列{an}的前n項的乘積,Tn(k)表示{an}的前n項中除去第k項后剩余的n-1項的乘積,即Tn(k)=
          Tn
          ak
          (n,k∈N+,k≤n),則數(shù)列
          SnTn
          Tn(1)+Tn(2)+…+Tn(n)
          的前n項的和是
          a12
          2-q-q-1
          (n+nq-
          q-qn+1+1-q1-n
          1-q
          a12
          2-q-q-1
          (n+nq-
          q-qn+1+1-q1-n
          1-q
          (用a1和q表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若數(shù)列{an}的通項an=
          1
          pn-q
          ,實(shí)數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項和.
          (1)求證:當(dāng)n≥2時,pan<an-1;
          (2)求證sn
          p
          (p-1)(p-q)
          (1-
          1
          pn
          )

          (3)若an=
          1
          (2n-1)(2n+1-1)
          ,求證sn
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知Sn是數(shù)列{an}的前n項和,an>0,Sn=
          a
          2
          n
          +an
          2
          ,n∈N*,
          (1)求證:{an}是等差數(shù)列;
          (2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項公式bn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•商丘二模)數(shù)列{an}的前n項和為Sn,若數(shù)列{an}的各項按如下規(guī)律排列:
          1
          2
          ,
          1
          3
          ,
          2
          3
          ,
          1
          4
          ,
          2
          4
          3
          4
          ,
          1
          5
          2
          5
          ,
          3
          5
          ,
          4
          5
          …,
          1
          n
          ,
          2
          n
          ,…,
          n-1
          n
          ,…有如下運(yùn)算和結(jié)論:
          ①a24=
          3
          8

          ②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
          ③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項和為Tn=
          n2+n
          4
          ;
          ④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
          5
          7

          其中正確的結(jié)論是
          ①③④
          ①③④
          .(將你認(rèn)為正確的結(jié)論序號都填上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          給出下列命題:
          ①若數(shù)列{an}的前n項和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
          ②在△ABC中,如果A=60°,a=
          6
          ,b=4
          ,那么滿足條件的△ABC有兩解;
          ③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
          ④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
          其中真命題的序號是

          查看答案和解析>>

          同步練習(xí)冊答案