日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和Sn滿足Sn2=an(Sn-
          1
          2
          )

          (1)求an;
          (2)令bn=
          Sn
          2n+1
          ,求數(shù)列{bn}的前項(xiàng)和Tn
          (1)當(dāng)n≥2時(shí),an=Sn-Sn-1
          Sn2=(Sn-Sn-1)(Sn-
          1
          2
          )=Sn2-
          1
          2
          Sn-SnSn-1+
          1
          2
          Sn-1
          ,
          ∴Sn-1-Sn=2SnSn-1
          1
          Sn
          -
          1
          Sn-1
          =2
          ,
          即數(shù)列{
          1
          Sn
          }
          為等差數(shù)列,S1=a1=1,
          1
          Sn
          =
          1
          S1
          +(n-1)×2=2n-1

          Sn=
          1
          2n-1
          ,…(4分)
          當(dāng)n≥2時(shí),an=sn-sn-1=
          1
          2n-1
          -
          1
          2n-3
          =
          -2
          (2n-1)(2n-3)

          an
          1,n=1
          -2
          (2n-1)(2n-3)
          ,n≥2
          …(8分)
          (2)bn=
          Sn
          2n+1
          =
          1
          (2n-1)(2n+1)
          =
          1
          2
          (
          1
          2n-1
          -
          1
          2n+1
          )

          Tn=
          1
          2
          [(1-
          1
          3
          )+(
          1
          3
          -
          1
          5
          )+…+(
          1
          2n-1
          -
          1
          2n+1
          )]
          =
          1
          2
          (1-
          1
          2n+1
          )=
          n
          2n+1
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}中,
          a
           
          1
          =1
          ,an=
          1
          2
          an-1+1
          (n≥2),則數(shù)列{an}的通項(xiàng)公式為an=
          2-21-n
          2-21-n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}中,a 1=
          1
          3
          ,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
          1
          an
          (n∈N*).
          (Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù)列{
          an
          n
          }的前n項(xiàng)和為Tn,證明:
          1
          3
          Tn
          3
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}中,a=
          12
          ,前n項(xiàng)和Sn=n2an,求an+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}中,a1=a,前n項(xiàng)和Sn構(gòu)成公比為q的等比數(shù)列,________________.

          (先在橫線上填上一個(gè)結(jié)論,然后再解答)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕尾市陸豐市碣石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          在數(shù)列{an}中,a,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
          (Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù)列{}的前n項(xiàng)和為Tn,證明:

          查看答案和解析>>

          同步練習(xí)冊答案