日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】常州地鐵項(xiàng)目正在緊張建設(shè)中,通車后將給市民出行帶來便利.已知某條線路通車后,地鐵的發(fā)車時(shí)間間隔 (單位:分鐘)滿足,經(jīng)測算,地鐵載客量與發(fā)車時(shí)間間隔相關(guān),當(dāng)時(shí)地鐵為滿載狀態(tài),載客量為1200人,當(dāng)時(shí),載客量會(huì)減少,減少的人數(shù)與的平方成正比,且發(fā)車時(shí)間間隔為2分鐘時(shí)的載客量為560人,記地鐵載客量為.

          ⑴ 求的表達(dá)式,并求當(dāng)發(fā)車時(shí)間間隔為6分鐘時(shí),地鐵的載客量;

          ⑵ 若該線路每分鐘的凈收益為(元),問當(dāng)發(fā)車時(shí)間間隔為多少時(shí),該線路每分鐘的凈收益最大?

          【答案】(1)1040;(2)120

          【解析】

          (1)根據(jù)題意得到的解析式即可,然后根據(jù)解析式可得當(dāng)發(fā)車時(shí)間間隔為6分鐘時(shí)地鐵的載客量;(2)由題意得到凈收益為的表達(dá)式,然后根據(jù)求分段函數(shù)最值的方法得到所求的最值.

          (1)由題意知,,(為常數(shù)),

          ,

          ,

          ,

          故當(dāng)發(fā)車時(shí)間間隔為6分鐘時(shí),地鐵的載客量人.

          (2)由,可得

          ①當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立;

          ②當(dāng)時(shí),,當(dāng)時(shí)等號(hào)成立,

          ∴當(dāng)發(fā)車時(shí)間間隔為分鐘時(shí),該線路每分鐘的凈收益最大,最大為120元.

          答:當(dāng)發(fā)車時(shí)間間隔為分鐘時(shí),該線路每分鐘的凈收益最大,最大為120元.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面是菱形,的中點(diǎn),的中點(diǎn).證明:直線平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在RtABC中,已知點(diǎn)A-2,0,直角頂點(diǎn)B0,-2,點(diǎn)Cx軸上

          1Rt△ABC外接圓的方程;

          2求過點(diǎn)-40且與Rt△ABC外接圓相切的直線的方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C1:(x+1)2+y2=25,圓C2:(x﹣1)2+y2=1,動(dòng)圓C與圓C1和圓C2均內(nèi)切.

          (1)求動(dòng)圓圓心C的軌跡E的方程;
          (2)點(diǎn)P(1,t)為軌跡E上點(diǎn),且點(diǎn)P為第一象限點(diǎn),過點(diǎn)P作兩條直線與軌跡E交于A,B兩點(diǎn),直線PA,PB斜率互為相反數(shù),則直線AB斜率是否為定值,若是,求出定值;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若函數(shù)為偶函數(shù),求的值;

          (2)若,求函數(shù)的單調(diào)遞增區(qū)間;

          (3)當(dāng)時(shí),若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB、PA、PBC分別為⊙O的切線和割線,切點(diǎn)ABD的中點(diǎn),AC、BD相交于點(diǎn)EAB、PE相交于點(diǎn)F,直線CF交⊙O于另一點(diǎn)G、PA于點(diǎn)K.

          證明:(1)KPA的中點(diǎn);(2)..

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù) 同時(shí)滿足以下兩個(gè)條件:
          x∈R,f(x)<0或g(x)<0;
          x∈(﹣1,1),f(x)g(x)<0.
          則實(shí)數(shù)a的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在極坐標(biāo)系中,設(shè)直線l過點(diǎn) ,且直線l與曲線C:ρ=asinθ(a>0)有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4﹣1:平面幾何
          如圖AB是⊙O的直徑,弦BD,CA的延長線相交于點(diǎn)E,EF垂直BA的延長線于點(diǎn)F.

          (1)求證:∠DEA=∠DFA;
          (2)若∠EBA=30°,EF= ,EA=2AC,求AF的長.

          查看答案和解析>>

          同步練習(xí)冊答案