日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          統(tǒng)計表明:某種型號的汽車在勻速行駛中每小時的耗油量(升)關于行駛速度(千米/每小時)的函數解析式可以表示為,已知甲、乙兩地相距100千米.
          (1)當汽車以40千米/小時的速度行駛時,從甲地到乙地要耗油多少升?
          (2)當汽車以多大速度行駛時,從甲地到乙地耗油最少?最少為多少升?

          (1)17.5;(2)80,11.2.

          解析試題分析:(1)求從甲地到乙地要耗油多少升,需要知道行駛時間和每小時的耗油量,行駛時間可由路程和行駛速度得出,而每小時耗油量是行駛速度的函數,可由條件中的函數關系式求出;(2)設速度為千米/小時,與(1)相同,可分別求出行駛時間和每小時的耗油量,則甲地到乙地耗油油量是速度的函數,列出函數關系式,再用導數求函數的最值.
          試題解析:(1)當千米/小時時,汽車從甲地到乙地行駛了小時,要耗油(升)
          所以,當汽車以40千米/小時的速度行駛時,從甲地到乙地要耗油17.5升
          (2)設速度為千米/小時,汽車從甲地到乙地行駛了小時,設耗油量為升,依題意得 
            令,得
          時,,是減函數,當時,, 是增函數∴當時,取得極小值
          此時 (升)
          答:當汽車以80千米/小時的速度勻速行駛時,從甲地到乙耗油量少,最少為11.2升
          考點:函數的應用,與導數與函數的單調性最值.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:解答題

          已知函數f(x)=a|x|+ (a>0,a≠1)
          (1)若a>1,且關于x的方程f(x)=m有兩個不同的正數解,求實數m的取值范圍;
          (2)設函數g(x)=" f(" x),x∈[ 2,+∞),滿足如下性質:若存在最大(。┲,則最大(。┲蹬ca無關.試求a的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          已知函數.其中
          (1)若函數的圖像的一個公共點恰好在軸上,求的值;
          (2)若是方程的兩根,且滿足,證明:當時,

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          定義在上的函數,當時,,且對任意的 ,有,
          (Ⅰ)求證:;
          (Ⅱ)求證:對任意的,恒有;
          (Ⅲ)若,求的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          已知函數   是奇函數.
          (1)求實數的值;
          (2)若函數在區(qū)間上單調遞增,求實數的取值范圍;
          (3)求函數的值域.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          如圖,在半徑為、圓心角為的扇形的弧上任取一點,作扇形的內接矩形,使點上,點上,設矩形的面積為,

          (Ⅰ)按下列要求求出函數關系式:
          ①設,將表示成的函數關系式;
          ②設,將表示成的函數關系式;
          (Ⅱ)請你選用(1)中的一個函數關系式,求出的最大值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          已知某公司生產品牌服裝的年固定成本是10萬元,每生產千件,須另投入2 7萬元,設該公司年內共生產該品牌服裝x千件并全部銷售完,每千件的銷售收入為R(x)萬元,且 
          (1)寫出年利潤W(萬元)關于年產量x(千件)的函數解析式;
          (2)年產量為多少千件時,該公司在這一品牌服裝的生產中所獲利潤最大?(注:年利潤=年銷售收入 年總成本)

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          已知函數是常數)在區(qū)間上有
          (1)求的值;
          (2)若時,求的取值范圍;

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          設函數定義域為,且.設點是函數圖像上的任意一點,過點分別作直線軸的垂線,垂足分別為

          (1)寫出的單調遞減區(qū)間(不必證明);
          (2)問:是否為定值?若是,則求出該定值,若不是,則說明理由;
          (3)設為坐標原點,求四邊形面積的最小值.

          查看答案和解析>>

          同步練習冊答案