日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和滿足Sn>1,且6Sn=(an+1)(an+2),n∈N*
          (Ⅰ)求a1
          (Ⅱ)證明{an}是等差數(shù)列并求數(shù)列的通項(xiàng)公式.
          分析:(Ⅰ)由題意可得:令n=1可得a1=1或a1=2,因?yàn)閍1=S1>1,所以a1=2.
          (Ⅱ)由an+1=Sn+1-Sn=,可得an+1-an-3=0或an+1+an=0,根據(jù)題意可得:an+1=-an不成立.所以an+1-an-3=0.再集合等差數(shù)列的定義可得答案.
          解答:解:(Ⅰ)解:由題意可得:a1=S1=
          1
          6
          (a1+1)(a1+2)
          ,解得a1=1或a1=2,
          因?yàn)閍1=S1>1,所以a1=2.
          (Ⅱ)由an+1=Sn+1-Sn=
          1
          6
          (an+1+1)(an+1+2)-
          1
          6
          (an+1)(an+2)

          可得an+1-an-3=0或an+1+an=0,
          因?yàn)閿?shù)列{an}的各項(xiàng)均為正數(shù),
          所以an+1=-an不成立,故舍去.
          所以an+1-an-3=0.
          根據(jù)等差數(shù)列的定義可得:{an}是公差為3,首項(xiàng)為2的等差數(shù)列,
          所以{an}的通項(xiàng)為an=3n-1.
          點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵是熟練掌握等差數(shù)列的定義域等差數(shù)列的通項(xiàng)公式,以及利用賦值法解決數(shù)列問(wèn)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
          Tn+1+12
          4Tn
          2log2bn+1+2
          2log2bn-1
          的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較數(shù)學(xué)公式數(shù)學(xué)公式的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:青島二模 題型:解答題

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
          Tn+1+12
          4Tn
          2log2bn+1+2
          2log2bn-1
          的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測(cè)試卷(陳經(jīng)綸中學(xué))(解析版) 題型:解答題

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年高考復(fù)習(xí)方案配套課標(biāo)版月考數(shù)學(xué)試卷(二)(解析版) 題型:解答題

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案