日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)在極坐標(biāo)系中,曲線C1的方程為ρ=2cosθ,曲線C2的方程為ρcosθ=2,則C1與C2的交點(diǎn)個(gè)數(shù)為
          1
          1

          (2)對(duì)于實(shí)數(shù)x,y,若|x-1|≤1,|y-1|≤1,則使得|x-2y+1|-m-1≤0恒成立的實(shí)數(shù)m的最小值為
          2
          2
          分析:(1)已知曲線C1,C2的極坐標(biāo)方程,可將圓C和直線C2先化為一般方程坐標(biāo),然后再計(jì)算曲線C1與C2交點(diǎn)的個(gè)數(shù).
          (2)首先分析題目已知不等式|x-2y+1|-m-1≤0恒成立的實(shí)數(shù)m的最小值,故可以考慮設(shè)y=|x-2y+1|,然后利用線性規(guī)劃的方法,求解出函數(shù)y=|x-2y+1|,的最大值,然后把m+1大于等于最小值,即可滿足條件.
          解答:解:(1)∵曲線C1,C2的極坐標(biāo)方程分別為ρ=2cosθ,ρcosθ=2,
          又x=ρcosθ,y=ρsinθ,分別代入消去ρ和θ,可得,
          x2+y2=2x,和x=2
          ∴把x=2代入x2+y2=2x得,
          y=0,
          ∴曲線C1與C2交點(diǎn)的個(gè)數(shù)為1個(gè).
          (2)設(shè)y=|x-2y+1|,畫(huà)出|x-1|≤1,|y-1|≤1,表示的區(qū)域,得正方形的四個(gè)頂點(diǎn)O(0,0),A(2,0),B(2,2),C(0,2)
          當(dāng)x=2,y=0時(shí),x-2y+1=3,
          當(dāng)x=0,y=2時(shí),x-2y+1=-3,
          故y=|x-2y+1|∈[0,3],其有最大值3.
          不等式|x-2y+1|-m-1≤0恒成立,即|x-2y+1|≤m+1,
          也即m+1必大于等于y=|x-2y+1|的最大值3.即m+1≥3,m≥2
          故實(shí)數(shù)m的最小值為:2.
          故答案為:1;2.
          點(diǎn)評(píng):(1)此小題考查極坐標(biāo)方程與普通方程的區(qū)別和聯(lián)系,兩者要會(huì)互相轉(zhuǎn)化,根據(jù)實(shí)際情況選擇不同的方程進(jìn)行求解,這也是每年高考必考的熱點(diǎn)問(wèn)題.
          (2)此題主要考查絕對(duì)值不等式恒成立的解法問(wèn)題,其中涉及到數(shù)形結(jié)合的思想,屬于基礎(chǔ)性題目.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          下面四個(gè)命題:
          ①已知函數(shù)f(x)=
          x
           ,x≥0 
          -x
           ,x<0 
          且f(a)+f(4)=4,那么a=-4;
          ②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
          ③已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1};
          ④在極坐標(biāo)系中,圓ρ=-4cosθ的圓心的直角坐標(biāo)是(-2,0).
          其中正確的是
          ②,④
          ②,④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (考生注意:請(qǐng)?jiān)谙铝袃深}中任選一題作答,如果多做則按所做的第一題評(píng)分)
          (1)在極坐標(biāo)系中,若過(guò)點(diǎn)(1,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=
          2
          3
          2
          3

          (2)已知方程|2x-1|-|2x+1|=a+1有實(shí)數(shù)解,則a的取值范圍為
          [-3,-1)
          [-3,-1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (坐標(biāo)系與參數(shù)方程選做題)
          (1)在極坐標(biāo)系中,設(shè)圓ρ=4上的點(diǎn)到直線ρ(cosθ+
          3
          sinθ)=6
          的距離為d,求d的最大值;
          (2)θ取一切實(shí)數(shù)時(shí),連接A(4sinθ,6cosθ)和B(-4cosθ,6sinθ)兩點(diǎn)的線段的中點(diǎn)為M,求點(diǎn)M的軌跡.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•武昌區(qū)模擬)(1)在極坐標(biāo)系中,點(diǎn)P的極坐標(biāo)為(
          2
          ,
          π
          4
          ),點(diǎn)Q是曲線C上的動(dòng)點(diǎn),曲線C的極坐標(biāo)方程為ρ(cosθ-sinθ)+1=0,則P、Q兩點(diǎn)之間的距離的最小值為
          2
          2
          2
          2

          (2)已知PA是圓O的切線,切點(diǎn)為A,PA=2,AC是圓O的直徑,PC與圓O交于點(diǎn)B,PB=l,則圓D的半徑R=
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          選做題(請(qǐng)考生在兩個(gè)小題中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分).
          (1)在極坐標(biāo)系中,過(guò)圓ρ=6cosθ的圓心,且垂直于極軸的直線的極坐標(biāo)方程為
           

          (2)若對(duì)于任意角θ,都有
          cosθ
          a
          +
          sinθ
          b
          =1
          ,則下列不等式中恒成立的是
           

          A.a(chǎn)2+b2≤1B.a(chǎn)2+b2≥1C.
          1
          a2
          +
          1
          b2
          ≤1
          D.
          1
          a2
          +
          1
          b2
          ≥1

          查看答案和解析>>

          同步練習(xí)冊(cè)答案