日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足2acosC﹣(2b﹣c)=0.
          (1)求角A;
          (2)若sinC=2sinB,且a= ,求邊b,c.

          【答案】
          (1)解:在△ABC中,由題意可得2acosC=2b﹣c,

          結(jié)合正弦定理可得 2sinAcosC=2sinB﹣sinC,

          ∴2sinAcosC=2sin(A+C)﹣sinC,

          ∴2sinAcosC=2sinAcosC+2cosAsinC﹣sinC,

          ∴2cosAsinC=sinC,即cosA= ,

          ∴A=60°


          (2)解:∵sinC=2sinB,∴c=2b,

          ∵a=

          ∴3=b2+c2﹣2bc ,

          ∴3=b2+4b2﹣2b2,

          ∴b=1,c=2


          【解析】(1)由題意和正弦定理以及和差角的三角函數(shù)公式可得cosA= ,進(jìn)而可得角A;(2)若sinC=2sinB,c=2b,由a= ,利用余弦定理,即可求邊b,c.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】截直線所得弦長為2,則實(shí)數(shù)__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的動點(diǎn).若CE∥平面PAB,則三棱錐C﹣ABE的體積為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在極坐標(biāo)系中,圓的極坐標(biāo)方程為,若以極點(diǎn)為原點(diǎn),極軸所在的直線為軸建立平面直角坐標(biāo)系.

          (1)求圓的參數(shù)方程;

          (2)在直線坐標(biāo)系中,點(diǎn)是圓上的動點(diǎn),試求的最大值,并求出此時點(diǎn)的直角坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)=2cos(ωx+φ)(ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,點(diǎn)A、B分別為該部分圖象的最高點(diǎn)與最低點(diǎn),且這兩點(diǎn)間的距離為4 ,則函數(shù)f(x)圖象的一條對稱軸的方程為(

          A.x=
          B.x=
          C.x=4
          D.x=2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}滿足a1=2,前n項和為Sn , 若Sn=2(an﹣1),(n∈N+).
          (1)求數(shù)列{an}的通項公式;
          (2)設(shè)bn=(log2an+12﹣(log2an2 , 若cn=anbn , 求{cn}的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形和四邊形均是直角梯形, 二面角是直二面角, .

          (1)證明:在平面上,一定存在過點(diǎn)的直線與直線平行;

          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若定義域為R的偶函數(shù)f(x)在[0,+∞)上是增函數(shù),則不等式f(log4x)+f(log0.25x)≤2f(1)的解集為( 。

          A. [,2] B. [,4] C. [,2] D. [,4]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a=cos61°cos127°+cos29°cos37°, , ,則a,b,c的大小關(guān)系是(
          A.a<b<c
          B.a>b>c
          C.c>a>b
          D.a<c<b

          查看答案和解析>>

          同步練習(xí)冊答案