對(duì)定義在區(qū)間上的函數(shù)
,若存在閉區(qū)間
和常數(shù)
,使得對(duì)任意的
,都有
,且對(duì)任意的
都有
恒成立,則稱函數(shù)
為區(qū)間
上的“
型”函數(shù).
(1)求證:函數(shù)是
上的“
型”函數(shù);
(2)設(shè)是(1)中的“
型”函數(shù),若不等式
對(duì)一切的
恒成立,求實(shí)數(shù)
的取值范圍;
(3)若函數(shù)是區(qū)間
上的“
型”函數(shù),求實(shí)數(shù)
和
的值.
(1)詳見解析;(2);(3)
.
【解析】
試題分析:(1)根據(jù)題意可將函數(shù)中的絕對(duì)值去掉可得一個(gè)分段函數(shù),可作出函數(shù)的圖象,不難發(fā)現(xiàn)當(dāng)
時(shí),
;當(dāng)
時(shí),
,由此可易得證; (2)由(1)中的函數(shù)不難求出函數(shù)的最小值,這們即可將問題轉(zhuǎn)化為求
恒成立,這是一個(gè)關(guān)于
的含有絕對(duì)值的不等式,去掉絕對(duì)值可得
,然后采用先分開后合并的方法求出此不等式的解集; (3)根據(jù)題中“
型”函數(shù)的定義,則可假設(shè)存在閉區(qū)間
和常數(shù)
,使得對(duì)任意的
,都有
,這樣即可得到一個(gè)恒等式,即
對(duì)任意
恒成立,則對(duì)應(yīng)系數(shù)分別相等,即可求出對(duì)應(yīng)的
,注意要回代檢驗(yàn)一下,判斷其余的是否均大于這個(gè)最小值.
試題解析:(1)當(dāng)時(shí),
;當(dāng)
時(shí),
,
∴ 存在閉區(qū)間和常數(shù)
符合條件.
4分
(2)對(duì)一切的
恒成立,
∴ ,
6分
解得 .
10分
(3)存在閉區(qū)間和常數(shù)
,使得對(duì)任意的
,
都有,即
,
∴ 對(duì)任意
恒成立
∴ 或
12分
① 當(dāng)時(shí),
當(dāng)時(shí),
當(dāng),即
時(shí),
由題意知,符合條件;
14分
②當(dāng)時(shí),
∴不符合要求;
16分
綜上,.
考點(diǎn):1.新定義題;2.分段函數(shù)的處理;3.函數(shù)的最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
1 |
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市徐匯區(qū)高三第一學(xué)期學(xué)習(xí)能力診斷卷理科數(shù)學(xué) 題型:解答題
(本題滿分18分)本題共有3個(gè)小題,第1小題滿分5分,第2小題滿分6分,
第3小題滿分7分.
對(duì)定義在區(qū)間上的函數(shù)
,若存在閉區(qū)間
和常數(shù)
,使得對(duì)任意的
都有
,且對(duì)任意的
都有
恒成立,則稱函數(shù)
為區(qū)間
上的“U型”函數(shù)。
(1)求證:函數(shù)是
上的“U型”函數(shù);
(2)設(shè)是(1)中的“U型”函數(shù),若不等式
對(duì)一切的
恒成立,
求實(shí)數(shù)的取值范圍;
(3)若函數(shù)是區(qū)間
上的“U型”函數(shù),求實(shí)數(shù)
和
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題二函數(shù) 題型:解答題
(16分)設(shè)使定義在區(qū)間
上的函數(shù),其導(dǎo)函數(shù)為
.如果存在實(shí)數(shù)
和函數(shù)
,其中
對(duì)任意的
都有
>0,使得
,則稱函數(shù)
具有性質(zhì)
.
(1)設(shè)函數(shù),其中
為實(shí)數(shù)
①求證:函數(shù)具有性質(zhì)
②求函數(shù)的單調(diào)區(qū)間
(2)已知函數(shù)具有性質(zhì)
,給定
,
,且
,若|
|<|
|,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
將函數(shù)的圖象先向左平移1個(gè)單位,再向下平移1個(gè)單位所得圖象對(duì)應(yīng)的函數(shù)為
(1)求的解析式;
(2)對(duì)定義在區(qū)間上的函數(shù)
若存在常數(shù)
,對(duì)于任意的
存在唯一的
使
則稱函數(shù)
在
上的均值為
求函數(shù)
在
上的均值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com